The Data Model of IDE: A Value Network

P. S. Newman

IBM Los Angeles Scientific Center

11601 Wilshire Boulevard

Los Angeles, California 90025

Abstract

The purpose of this paper is to describe and ana-
lyze the data model used in IDE, an experimental

integrated data processing environment.

termed 'value networks".
considerable,
eliminating discontinuities

language forms and data base access forms.

The data
model is one of a class of models which might be
Models in this class have
as yet unexploited, potential for
between programming
The

paper describes the IDE value network, discusses

how its features contribute to the accessibility of
data bases from programming languages, and demon-

strates that accessibility is achieved without sac-

rificing representational expressiveness.

1. INTRODUCTION

The purpose of this paper is to describe and ana-
(Integrated
as an example of a
class of models having considerable, but largely
unexplored, advantages in the areas of accessibil-

lyze the data model used in IDE

Data-processing Environment),

ity from programs, and expressiveness.

The goal of the IDE project?® is to demonstrate the
feasibility of providing expected types of applica-

tion development facilities - programming language,

data base management, application

generation,

repositories - in a more unified way than is usual-

ly the case.

One of the most important methods used in IDE to
unify these facilities is to employ a single data
model for all persistent data (files and data bas-
es) of the enviromment, and for all local data of
the programming language of the environ-

PL/IDE,
ment.

This approach allows all data, local and persist-

ent, to be accessed using the same, very high level
In using only one data model, it differs
from approaches which add data base oriented struc-
languages

syntax.

tures and operators to programming

already containing a full complement of traditional

data types.

obtain consistency between (some)

external data references,

= CH2226-9/85/0000/0246501.00 © 1985 [EEE

Such additive approaches, examples of
which are EAS/E,? PLAIN,* ADAPLEX,* and ADAREL,® do
local
but they also increase

and

the size and complexity of the programming lan-
guages by the additions.

The single-model approach is practical, however,
only if the data model meets some rather stringent
requirements. It must be expressive enough ‘to
serve as a data base model, but, since it is used
for all data, also simple enough to allow succinct
programming language access.

The data model designed around these requirements
in IDE falls into a class of closely-related models
which might be called value networks. Like other
network models, such as the entity/relationship
model,® and the functional model,” ® value networks
are connected. However, the objects connected are
values, rather than a required mixture of values
and abstract entities.

The result is a formulation particularly suitable
as a base for programming language. Like func-
tional models, value networks are subject to func-
tional reference patterns consistent with HLL
syntax. The elimination, in value networks, of
obligatory entities allows references to be more
direct, and allows modelling of all program-local
data. As will be discussed further on, the omis-
sion of entities has no ill effect onm the expres-
sive power of these models.

Many models have been described which may be con-
sidered value networks, including the DIANM,®
IDEA,*® and NDB'' models, and the data model of
FST.!? Some more recent representatives include the
ODB'® (a refinement of NDB) and ODM** models.*

However, the fact that many models fall into this
class does not eliminate the need for further dis-
cussion. First, the above examples vary widely in
power and flexibility. The IDE model represents a
good synthesis, in that a very small number of
mechanisms are needed to define data collections
with a high degree of representational flexibility,

* The list of value networks given here includes
only models intended for use in accessible data
bases, not the multitudinous, closely-related
"conceptual models" intended for use in data
base design. An example of the latter is the
ENALIM model.!S

Also, the language potential of value networks has
not been recognized or exploited to any extent.
Most efforts in this area have not focussed on
access language, and/or have taken place in envi-
ronments which did not admit of formulating new
language.

The purpose of this paper is, thus, twofold: (a) to
describe the IDE variant of the class, and (b) to
remedy the lack of attention to the language poten-
tial of the class by illustrating and analyzing its
language-oriented advantages. The IDE data model
is introduced in section 2.% Sections 3 and 4 pro-
vide an overview of the PL/IDE reference syntax,
which is heavily influenced by the SETL language.'®
Section 5 then analyzes how the features of the
model make possible the language forms illustrated,
by contrast with the relational and functional mod-
els. Finally, section 6 shows that the linguistic
advantages of the model are obtained without sacri-
ficing expressiveness.

2. THE IDE DATA MODEL

IDE considers data to be grouped into data col-
lections. Each module writtem in’ the language
declar-s. a distinguished data collection for local
data. Other data collections represent external
data bases. Data collections are made up of sets. A
set in turn, is made up of tuples. The elements of
a tuple are ordered. All tuples in a set are homo-
geneous in the sense that (a) they have the same
number of elements, and (b) the elements in a par-
ticular tuple position are all drawn from the same
source set. A source set must be another set in the
same data collection.

Some sets are built-in to every data collection, to
serve as ultimate source sets. These include the
sets REAL, INTEGER, and STRING - respectively the
sets of real numbers, integers, and strings (or,
rather, their subsets falling within implementa-
tion-defined limits). The built-in sets also
include subranges of the ultimate source sets, spe-
cified by functions. For example, "IntRng(0,9999)"
specifies the set of positive integers below 10000,
and "StgRng(3,4)" denotes the set of strings having
at least three, and at most four characters.

Figure 1 contains a sample data base schema,
adapted from a report omn ADAPLEX®. The set Dept is
drawn from the constant set of 4-character strings.
The set Major is an association relating Students
to Depts. The set Credits_Given is an association
relating the tuples of Course to their respective
Credits given. Finally, the set Student is drawn
from the set Person, i.e., it is a subset of Person.

The source set formulation is a rather powerful
one, both structuring the network, and providing
for its integrity, in an economical fashion. This
is made possible by the interaction of set defi-

* An early version of the IDE data model is

described in reference 17.

1
SETS SOURCE SETS

Dept <StgRng(4,4)>

Course <Dept, IntRng(100,500)>
Credits_Given <Course, IntRng(0,6)>
Lecturer <Course, Instructor>
Person <Ssno>

P_Name <Person, StgRng(1,30)>
Student <Person>

Advisor <Student, Instructor>
Major <Student, Dept>
Enrolled <Student, Course>
Instructor <Person>

Rank <Instructor, Rank>

Figure 1. A Data Collection Schematic

nitions and primitive operations on sets, discussed
below.

2.1 Set Definition

The definition of a set S of a data collection con-
sists primarily of a tuple <S81,....... Sn>, where
the Si are the source sets for S.

The degree of a defined set S depends on the number
n of its source sets, and their degree. If n > 1,
then the degree of S5 is n. If one or more of these
n > 1 source sets themselves have degree > 1, then
the tuples of S contain tuples as components. That
is, one might represent a member of Si as
<al, a2,....,<ajl,...,ajm>,...,an>

However, if $ has only one source set, e.g., 5i,
then the degree of S is equal to the degree of §j,
and S is a subset of Sj. For example, -if §j has
degree m, then one might represent a member of S as
<al,..., am>, rather than as <<al,....,am>>.

Set definitions also include an indication of vari-
ability. A set may either be STATIC (constant). or
DYNAMIC (variable). STATIC sets are given their
constant. values as part of their definition:
DYNAMIC sets may be further qualified as CON-
TROLLED, placing limitations on the circumstances
under which they may be extended (see below).

The variability properties interact with the primi-
tive operations on sets - insertion and deletion -
to assure that source set constraints . are
respected, but without impeding convenient access.
In general, a tuple T = <tl,...,tn> may be added to
a set S with source sets <S1,...,S8n> only if for
each ti, either (a) ti is already a member of Si, or
(b) Si permits implicit insertion - it is DYNAMIC
but not CONTROLLED. 1In the latter case, the addi-
tion of T to S will cause the addition of ti to 8i.

(Deletion .of a tuple is always permissible. The
deletion of a tuple T from a set § causes the

deletion of all tuples containing T as a component
in a position whose source set is §.)

A few more aspects of set definitions are mentioned
for completeness. First, sets are declared as SIN-
GLE (constrained to a single meniber) or MULTIPLE.
Also, binary sets (sets of degree 2) are identified
as "1-to-n", "1-to-1", "n-to-1", or "m-to-n".

Given the above formulation of set definitions,
source sets economically provide all of the follow-
ing capabilities:

All tuple-elements are ulti-
- built-in or
value

° Value constraints:
mately derived from source sets
user-defined - representing specific
ranges or enumérations.

. Network structure and integrity: Sets connect-
ing members of other sets form the network. No
association can exist unless its components are
established in their respective source sets.
This provides the integrity .which can be
achieved in hon-connected models only by addi-
tional provisions (e.g., the '"referential
integrity" provisions proposed for the rela-
tional model by Date, %)y,

¢ Specialization: When a source set 81 is identi-
fied fo: a set 52, then members of S2 can par-
ticipate in all associations defined on both §1
and S2. This achieves the specialization capa-
bilities called for by Smith and Smith,!® For
example, in the schema of Figure 1, all persons
may participate in & P_Name association, but
only those pe-sons in the Student subset may
have Instructors, Majors, etc.

2.2 Representation of HLL Data Types

The modal is used in PL/IDE to represent equiv-
alents of typical built-in programming language
data types. The equivalents of scalar constants
are provided by STATIC, SINGLE sets. Variables are
DYNAMIC, SINGLE sets. HLL Structures (e.g., Pascal
records, FL/I Structures) are modelled as col-
lections of associations with a particular compo-
nent in common (e.g., the name, major-field, etc.,
associations for a particular student). (Further
on we descrite provisions for operating on non-hom-
Ogeneous aggregations of sets as a unit.)

To aid in the modelling of arrays, cross-products
cf integer ranges are provided as built-in sets.
Then an n-dimensional array can be modelled as s
binary association between such a cross product and
the set from which the array element values are
drawn.

Lists are not modelled directly, but, rather, using
the abstraction features of the PL/IDE language,
not described here. While they could be modelled
as tuples of variable length (as is done in SETL),
this alternative is tentatively discarded because
of its implications for compilation.

248

Turning now from built-in types to type systems,
Source sets provide capabilities related to those
of programming language type systems. Instead of
declaring many variables of the same type, one
declares many sets with the same source set. The
language uses this information to constrain what
can be stored in a set. (However, PL/IDE is not a
strongly-typed language in the sense of ADA.™ Only
ultimate source sets - e.g, integer, real - are
used to constrain the applicability of built-in
operations, and to disambiguate overloaded oper-
ations.)

2.3 Other Value Networks

As mentioned above, there are other data base mod-
els which can also be considered value networks,
such as NDB and its refinement ODB, ODM, and the
data model of FST. These models do not use -the
"source set" formulation of IDE, in the sense that
ultimate value constraints are either omitted, or
require additional mechanism for their expression.
Also, the models generally provide less representa-
tional flexibility, and do not exploit their poten-
tial as bases for programming language.

The NDB/ODB model is closer to the enti-
ty/relationship (E/R) model than IDE, in that the
"data element" nodes o° the network have both enti-
ty ddentifiers and wvalues. However, the entity
identifiers of NDB/ODB are, unlike those of the E/R
inodel externally referenceable. They play an
important role in the (intentionally) relatively
low level interface of NDB, designed to be used via
call from existing programming languages. With
regard to representation, NDB/ODB does not permit
associations of degree > 2, associations among
associations, or subsets.

The FST data model is a true value network, and has
an associated higher level language which, while
less powerful than PL/IDE, is also related to SETL.
The representational restrictions of FST are simi-
lar to those of NDB/ODB.

The ODM model also has some similarities to IDE, in
that it is one of the few accessible data models
which permit associations among associations. Hoy-
ever, ODM is intended to be a very simple model, to
be used as a base for the construction of richer
As it is thus to be a kind of data base prim-

ones.
itive, there is no provision for data collection
definition, or typing, and thus no constraints,

Also, all sets seem to be of degree 2 - i.e., one
can create scalar objects, but not sets of such
objects.

3. SET REFERENCE

The IDE model is specifically designed to allow a
succinct, convenient data reference syntax. Ip
—_—

™ ADA is a registered trade mark of the U. §. Goy-
ernment (Ada Joint Program Office).

particular, it allows the adaptation of SETL-like
reference forms to the more data-base-oriented mod-
el of IDE. We begin by discussing references to
module-local data, and then move to the handling of
references to external data collections.*

3.1 Setnames

A defined set is referenced by its name. Setnames
may appear as operands of scalar and set operators.
Only those setnames defined as single-position,
single-member sets may appear as operands of scalar
(e.g., arithmetic, boolean, and string) operators.
When setnames appear in such contexts, they are
viewed as denoting their scalar content, which
treatment may be interpreted as a form of coercion.
Thus if A and B are single-position, single-member
sets ultimately deriving from the set of real num-
bers, the expression "A + B" is acceptable and
represents the real sum of the two numbers.

Any setnames may appear as operands of set opera-
tors (if they are compatible in ultimate source
sets). Thus if C and D are arbitrary, compatible
sets, the expression "C union D" is acceptable and
has the expected value.

3.2 Functional Reference Forms

These forms, which look like function invocations,
allow references such as those shown in Figure 2
(to the sets shown in Figure 1). The structure and
then the neaning of these forms is explained below.

In general, a functional reference has the form
s(al,....,an)

where s is a set name, and the aj's are generally
expressions or ? symbols. For example, the set
P_Name, with source sets <Person, String>, might be
referenced by

P_Name('&444-222-111", 7).

The value of this expression is the set of second
components of tuples of P_Name whose first compo-
nent is '444-222-111'. Since we assume that P_Name
is defined ,as "n-to-1", the result is a single mem-
ber set.

More generally, the value of a functional reference
s(al,...,an) is, in relational terms, the resunlt
of:

° selecting those tuples <til,..... ,tin> from s
where, for all j such that. aj contains an
expression ej, tij = the value of ej.

%

The discussion of PL/IDE in this paper is
informal, and limited to data accessing aspects
relevant to the discussion to follow. The full
language will be described in a forthcoming

paper.

249

P_Name ('444-222-333")
The name of the person with
identifier '444-222-333'

P Name (?, 'John Smith')
The set of identifiers of
people with name 'John Smith'

Lecturer (<'Math', 404>)
The identifier of the lecturer
in Math 40&4.

P_Name (Lecturer(<'math',404>))
The name of the lecturer
in Math 404,

-Lecturer(?,: |P_Name(?, 'John Smith'))
The courses taught by people
named 'John Smith’

Figure 2., Functional Reference Examples

. projecting the results on those positions j
such that aj contains a "?".

The aj's may also include the combination "?:ex-
pression”, indicating that the position is used for
both selection and proiection. Also, the aj's may
include the symbol "«", which is an expression
whose value matches anything. ‘

By convention, a reference s(al,...,am) to a set of
degree m+n is equivalent to a reference
s(al,...,am, ?...?7), with n-trailing ?. Thus

P Name('444-222-111")
is equivalent to P_Name('444-222-111',7).

Multi-valued (set) arguments are permitted within
the functional reference form. For example, “the
names of all students enrolled in a course ¢ might
be found by -

P_Name(|Enrolled(?, c)).

The result of the inner (Enrolled) reference is a
set e of all students enrolled in course c. "}"
indicates that the P_Name function is to be applied
once for each member of e. The result of the full
expression is union of the results of each applica-
tion of .P_name.

In general, a functional reference: cofitaining one
or more arguments preceded by "|" is evaluated by
considering the arguments as a sequence of domains.
The result is obtained by taking the union of the
results of applying ‘the function once to each argu-
ment list in the cross product of those domains.

It should be noted that the functional refere.ce
form can be used to access IDE tuples because their
components are ordered (rather than labelled), and
non-directional (i.e., the question marks can be
placed anywhere). It is true that the form is con-

venient only for referencing short tuples, as posi-
tional referencing of long tuples is very error
prone. But the use of short tuples is consistent
with the most expressive use of the model, in which
independent associations are represented as sepa-
rate sets. This point will be dddressed again in
the context of comparisons with the relational mod-
el.

A closely related shorthand form for testing set
membership is also defined. The form

s:<al,...,an>
where the ai's may be expressions or "*" (don't
care), tests whether <al,....,an> is a member of s.
It is equivalent to the expression

COUNT(s(?:a1, ?7:a2, ., 7:an)) ne 0

3.3 Query Forms

Another important set manipulation form is the que-
ry form. It is adapted from the "set-former" con-
struct of SETL. A motivating example is

{<?s> <?d> where Major:<?s,?d>
and DeptFaculty:<?d, 'Science'>)

meaning "the students majoring in departments in
the science faculty”. The bound variables of the
query are ?s and ?d. The separate bracketing of ?d
indicates that the values found for ?d are not used
in the result.

In general, a query representation of a set is giv-
en by .

{<result list> <drop list> where boolean exp}

where the result and drop lists both have the form
<tl,...,tn>. The result list specifies the result
tuples. Each term ti may be either a bound variable
of the query (e.g., ?v), a constrained bound vari-
able (e.g., "?v from setname"), or an expression in
some of the other bound variables in the result and
drop lists. The drop list specifies those existen-
tially quantified, bound variables of the query not
to be used in the result.

The form "?v from setname" is required only if the
"where clause" is not sufficient to establish a
domain for the query variable, directly or indi-
rectly. In the motivating example, it is unneces-
sary. The boolean expression can only be true for
values of ?s and ?d appearing in tuples of the Major
set,

The query form is very powerful. While universally
quantified variables are not used explicitly, the
ability to use set operations and functional refer-
ences within "where clauses" provides similar capa-
bility. For example, the set of instructors each
of whom teach all math majors can be found by:

{?i from Imstructor where

Major(?, 'Math') in Enrolled(?, |Lecturer(?,?i))}

250

(i.e., all instructors ?i for whom the set of math
majors Major(?,'Math') is a subset of (in) the set
of students enrolled in courses given by ?7i)

The query form is also the core of the iteration
construct. For example, the statement

For ?s where Major:<?s, 'Math'>
and Level:<7?s, 'Senior'>

would iterate over all senior math majors. The
result variables of the embedded query serve as the
iteration variables.

3.4 Assignment

Assignment to objects of the model is done in pro-
gramming language rather than data manipulation
language style. Instead of forms such as "UPDATE
xxx WHERE", assignment statement forms are used.
However, as befits a data base oriented language,
there is not a single assignment operator, but
rather three, corresponding to "insert", "delete",
and "replace”.

"A 4= B" adds to A the members of B not already in
A. "A -=B" deletes from A those members also in B.
"A = B" is defined as the result of (a) deleting
from A all elements not also in B, and thern (b} add-
ing to A all elements of B not in A.*

(Shorthand forms encapsulating arithmetic oper-
ations and assignment were introduced in ALGOL6S.2°
Schmidt?! adapted them to relational assignment.)

Assignments can also use functional reference forms
"left of equals”, e.g.,

Major('333-222-111') = 'Math'.

The effect of this statement is to modify the set
Major so that the value of the expression "Ma-
jor('333-222-111') becomes 'Math'. More precisely,
the statement is equivalent to the sequence

Major -= <?x, ?y> where Major:<?x, ?y> and
7x eq '333-222-111' and ?y neq 'Math’

Major += <'333-222-111", 'Math’'>

3.5 Data Base Reference

In this paper we will assume that PL/IDE gives spe-
cial handling to the referencing of external data
bases. The actual formulation is more general and
object-oriented. However, the syntax and results
of the data base references as described here are
correct, as far as they go.

* Note that "A=B" is not equivalent to the result of
(a) setting A to null and then (b) adding the
members of B, because step (a) would cause the
erroneous deletion of tuples of other sets hav-
ing A as a source set.

An external data base reference, according to these
assumptions, is obtained by prefixing the name of
the data base to the set of interest. For example,
if "Chged Majors" is a local set relating students
to their new majors, the statement

For <7x,?y> where Chged Majors:<?x,%7y>
Acad.Major(?x) = %y
End

is acceptable and modifies the data base "Acad"
based on the content of "Chged Majors”.

Thus local and global data referencing is fully
unified. The only difference between the referenc-
ing of local and of persistent data is the prefix-
ing of a data base name in the latter case.

4. DATA GROUPS

One other aspect of the IDE data model, data
groups, is addressed here, to complete the presen-
tation of the reference forms developed for the
model. Data groups are mnon-homogeneous aggre-
gations of named sets. They are useful in applica-
tions requiring the handling of subcollections of
data as a unit, both small subcollections (such as
all associations involving a particular item), and
large subcollections involved in bulk load, update,
and extraction. We discuss below operations which
produce and store data group expressions, and then
comment further on their uses.

4.1 Data Group Expressions and Assignment

Data groups are obtained as the values of data
group expressions. (Expressions discussed up to
this point have been set expressions; expressions
having individual sets as values.)

There are several kinds of data group expressions.
The first is the enumerated data group
expression, which lists the sets in the data group
and their members. An example is:

[Student 'George', 'Mary’

Status <'George', 'soph'>

Enrolled <'George', <'math', 131>>,
<'George', <'compsci', 411>>,
<'Mary', <'math', 431>>,
<'Mary, <'compsci', 100>>}

which produces a data group containing the sets
Student, Status, and Enrolled, with the indicated
content. Note that the sets contained in a data
group are not connected.

The above is an unfactored instance of a form which
can be highly factored to limit ceding and incrsase
expressiveness. For example, the following enumer-
ated data group expression has exactly the same
meaning:

251

[Student
'George'
[Status 'soph'
Enrolled <'math’', 131>, <'compsci', 411>],
"Mary' :
[Enrolled <'math', 431>, <'compsci', 100>]]

(There are other enumerated forms relying on tem-
plates rather than repeated relationship names, not
shown here.)

A second type of data group expression, the
extraction expression, extracts a data group from
an existing data collection. This can be done by
supplying a list of sets to be extracted. For exam-
ple:

DB. [Student, Status, Enrolled]

which would obtain a data group containing the sets
Student, Status, and Enrolled, having the same mem-
bers as the identically named sets of DB.

Another form of extraction expression obtains data
along a hierarchic path through a data collection.
An example is

DB.[Student [Status Enrolled]](set-exp)

where "set-exp”" 4is used as a constraint on the
first set mentioned. This would obtain a data
group containing (a) a set Student, with members
'DB.Student intersect set-exp', and (b) the sets
Status and Enrolled containing tuples of DB.Status
and DB.Enrolled having members of the new Student
set as their first components.

(Note: a slightly longer form allows tracing hier-
archic paths through other than last-position com-
ponents of tuples.)

A final way of obtaining a data group is by defining
a named path as part of the definition of:a stored
data collection. A data group can then be obtained
by:

DB.pathname (set-exp) .

where set-exp is, as above, a constraint to be used
on the first set in the path.

Data groups are subject to ‘the operations of data
group union (dunion) and data group difference
(dminus). They may also be used in data group
assignments, and as arguments in inter-module com-
munication.

A data group assignment statement modifies the con-
tent of the left-hand data collection by the
right~hand data group. For example, the form

DB.{] += data group expression.

has the effect of a sequence of "+=" statements en
each of the sets of DB having a set with a matching
name in the "right of equals" data group. DB might
be a large external data base, or a small temporary
data collection.

4.2. Uses of Data Groups

The full set of uses of data groups in PL/IDE cannot
be discussed in the absence of a ‘discussion of the
object-oriented aspects of the language. However,
a few comments can be made.

First, data group assignment can be used to load or
update a data base in bulk. For example, one might
write a program consisting only of a data group
assignment statement with a very long, enumerated
data group expression "right of equals".

Next, data groups can be used as arguments (matched
by parameters representing temporary data col-
lections) to provide the equivalent of HLL record
arguments.

Perhaps the most interesting use of data groups is
to allow extraction and movement of non-homogeneous
data to and from data bases. The importance of this
type of capability for engineering design applica-
tions has been shown by Haskins and Lorie.?? They
have proposed a way of providing this capability in
relational data bases by extending the model to add
special path-creating fields. Im IDE, the same
effect is obtained by referencing predefined or
dynamically structured paths through ordinary
relationships. For example, if PartPath is a pre-
defined path through data collection DB which
includes all information about a part, then the
statement

MYDB.[] += DB.PartPath ('gadget')

would copy all information about the part 'gadget’
to data collection MYDB. :

A final use of data groups is for the declarationms
of the PL/IDE language itself. The declarative
portion of a module or data definition consists of
a declaration block whose content is an enumerated
data group expression. The latter contains sets
designed to be used in schema definition. Other,
related declarative uses of data groups are dis-
cussed in reference 23.

5. FEATURES AND ACCESS LANGUAGE

As demonstrated in the previous sections, value
networks in general, and the IDE data model in par-
ticular, are extremely amenable to programming lan-
guage access. Furthermore, this accessibility is
achieved without loss of the representational
expressiveness needed in a good data base model.
This section analyzes the features of the IDE data
model which contribute to its accessibility. The
next major section (section 6) addresses the ques-
tion of expressiveness.

The ability of the IDE data model to serve as a base
for programming language rests on its ability to
represent classic HLL data structures (variables,

252

arrays, record structures), and to provide succinct
access, in programming language style, to all data.

This ability is obtained, to a large extent, wvia
the formulation of associations in the model, which
are (a) positional, (b) atomic, (c¢) non-direction~
al, and (d) associations of values. Positional
associations are associations where participant
roles are represented positionally rather than by
labels. Atomic associations, as discussed by Imie-
linski and Lipski?®, are the basic facts repres-
ented in a data collection, which cannot be further
decomposed without loss of information. (The use of
atomic associations cannot be enforced, but the
model is most effective when restricted to such
associétions.) Non-directional associations are
ones which can be accessed in any direction. Asso-
ciations of values are contrasted with associations
of abstract, non-printing "entities" found in some
models.

The importance of these characteristics can best be
shown by observing the effects of their absence
from closely related models, namely, the functional
and relational models. We begin by outlining, for
reference, the assumptions made about the latter
models, and then discuss the problems they raise
for the design of access syntax.

5.1 Assumptions

The version of the functional model to be consid-
ered here is that seen in DAPLEX’ and somewhat mod-
ified in ADAPLEX.® While the two models differ
somewhat, they can both be fairly described as
incorporating the following constructs:

. Entities

* "Functions" mapping entities to other entities
or to values (but not mapping values to val-
ues).

. Subsets of entities - the specialization mech-
anism.

The version of the relational model assumed consid-
ers a data collection to be a collection of
relations, each of which is composed of some unor-
dered, named columns. The columns are usually con-
strained to contain values from particular built-in
value domains (e.g., integer ranges). Some columns
may be identified as keys.

5.2 Functional Model Comparison

On the surface, the functional model appears very
similar to the IDE data model. But, while the asso-
ciations of the functional model are positional,
they are not associations of values, and they are
not accessible in any direction.

These differences have a number of effects on lan-
guage. First, references to functional data must
be circuitous. Consider, for example, a data base
containing information about Parts, identified by

part numbers, and their prices. One cannot simply
define a relationship "Price (Partno, Dollars)",
and then ask "what is the price of part X123" or, in
IDE syntax:

Price ('X123").

One reason is that values (such as part numbers and
prices) may not be directly related to other val-
ues; only entities may be related to values. Thus
one must define two functions, for example 'Par-
tId(Part, Partno)', and 'Price(Part, Dollars)',
both associating the entity 'Part’' with a value.
And both these functions must be referenced to find
the price of a part, i.e., the query becomes "what
is Epe price of the part entity whose partno is
X123".

The fact that functions of the functional model are
uni-directional further complicates the statement
of this query. One cannot use an equivalent of

Price(PartId(?, 'X123"))

because the Partld function relates Parts to Part-
no, but not Partno to Parts. Instead, one must move
to predicate forms, and use an equivalent of:

Price (?x where PartId(?x) = 'X123")

To aveid this circumlocution, and obtain the sim-
plicity of "Price('X123')" within the context of
the functional model, one can resort to mechanisms
for the definition of derived functions and of pro-
cedures to update them. Such mechanisms can, in
fact, be useful, but should not be required for
such simple cases.

An equally serious limitation of the functional
model is that it cannot model traditional language
structures. Since values only appear in the range
of functions, there is no way to represent individ-
ual values (constants and variables), or structures
wvhich directly relate values to values (such as
arrays). Thus any use of the functional model
within programming languages must be additive.

Finally, the entity orientation of the functional
model makes the movement of data among data col-
lections difficult, as entity identifiers are
unique only within data collections. Provisions
are made In ADAPLEX for addition of an entity to a
data base together with its properties (all func-
tions having that entity as their domain). Howev-
er, if the range of a function is another entity,
reference to the latter must be made via a predi-
cate. This is awkward. Furthermore, it is not
obviously extensible to bulk data movement, e.g.,
the copying of a group of entities, and their prop-
erties, from one data collection to another (as can
be done using the data group operations described
in the previous section).

5.3 Relational Model Comparison
We assume that some equivalent of functional refer-

ence forms are needed for smcoth access to data
bases from programming languages. In the introduc-

tion to this section four requirements for the for-
mulation of associations were cited as key in
supporting direct functiomal reference: that they
be positional, atomic, non-directional, and value-
oriented. The need for mon-directional, value-or-
iented associations was demonstrated by a
comparison with the functional model. The impor-
tance of positional, atomic associations is demon-
strated by a consideration of the relational model.

By definition, the relational model uses labelled
rather than numbered (positional) columns. By con-
vention, relational schema contain wide relations
representing the join of many atomic associations
involving the same "key". These two aspects work
together. Wide relations are difficult to refer-
ence positionally, so column labels must play a

part in relational reference patterns.

It is very difficult to design satisfactory func~
tional references in this context. One alternative
is to consider the non-key columns of a relation to
represent (individual) functions of the key,
requiring the imposition of order on the components
of compound keys. It leaves the problem, however,
of access to the keys themselves.

To allow all components of a relational tuple to be
accessed functionally, one can consider the columns
to represe-t functions of "tuple id"s associated
with each row. In effect, this provides the begin-
nings of a functional model (with entities approxi-~
mated by tuple-ids), having the drawbacks of that
model, but fewer of the advantages.

Schmidt??! has described an approach which synthe-
sizes some of the above directions. In that
approach, -order is imposed on attributes, so that
tuples can be expressed as vectors. Column names
are used as functions of tuple variables (expressed
as tuple_var.colname) within queries and iteratiom
constructs. Finally, the form "Rel(Sel:sl,..sn),"
where Sel is defined as a collection of ordered
columns of Rel, is used to identify ‘subrelations
having the values sl,..,sn in the specified col-
umns. These variations in reference forms; togeth-
er with many types of primitive and higher-level
operators, produce an interesting data sublanguage,
but one which is very complex.

6. FEATURES AND EXPRESSIVENESS

The features of the IDE model which facilitate its
use as a programming language base do not detract
from its suitability as a datd base model. That the
model provides good support for integrity via
source-sets (which supply both value constraints
and referential integrity) should be clear. Fur-
thermore, in the area of representational expres-
siveness, which is primarily a question of the
information content of schemas, the model is supe-
rior to the relational model and at least the equal
of the functional model. This claim is justified
below.

6.1 Relational Model Comparison

The expressiveness problems of the relational model
have been dealt with at length by Kent?® and oth-
ers. In general, a data base schema is expressive
if it makes clear: (a) what associations are main-
tained, (b) what kinds of things participate in
those .associations, and (c) in what roles. In the
classic relational model there is no formal pro-
vision for expressing this information. Instead,
column labels are used informally to convey various
kinds of semantic information. For example, in the
relation

Student (Ssno, Name, Major, Advisor, Bldg, Room)

Ssno and Name might identify domains, while Major
and Advisor serve as both association names and
role names; the domains for those columns (respec-
tively department and instructor) are omitted. The
labels Bldg and Room might identify domains which,
when taken together, represent an office allocated
to the student.

It is possible, of course, to establish installa-
tion conventions for the use of a relational data
base requiring that each independent association be
placed in a different relation. This would allow

‘relation names to serve as association names, and

thus allow attribute rames to represent participant
domains in most cases. But it is of no help when
“wo participants in the same relation are drawn
from the same domain. Nor is it of assistance in
identifying compound domains.

Augmentations to the relaticnal model to increase
its expressiveness have been proposed by Codd2® and
others, but each such proposal adds features which
can be expressed more economically by reconsidering
the model as a whole. The IDE model can be thought
of as the result of such a reconsideration.

6.2 Functional Model Comparison

It is claimed above that the IDE model is at least
as expressive as the functional model. This claim
may seem unwarranted, given the lack of "entities"
in IDE.

However, it is not clear that the partitioning of
data into "entities" and "values" aids in schema
construction and comprehension. As discussed by
Kent,?? it is extremely difficult to construct firm
criteria for deciding what things will be consid-
ered "entities". Thus while the partitioning has a
distinct semantic ring, the semantic base is in
fact flimsy, and not particularly conducive to
increased understanding.

A major justification for the use of entities is
that things may have many externally-assigned
names, and those names may not be unique. Thus sys-
tem-assigned names are required. This justifica-
tion is valid in the context of "knowledge bases"
intended to represent arbitrary real world informa-
tion, where the objects represented generally do
not have systematic associated naming systems. For

example, in the conceptual graphs of Sowa?® all
nodes representing specific instances are entities.

However, this justification for entities disappears
in the context of a commercial data base. There the
things chosen as entities (such as parts, depart-
ments, employees) are usually precisely those
things that do have unique external identifiers
(and if they do not - should). Thus we see the use
in ADAPLEX of declarative material distinguishing
between functions of an entity which uniquely iden-
tify the entity (keys) and those which are . other
properties of the entity.*

It should be noted that what is being questioned
here is the utility of obligatory entities, not of
system-assigned identifiers. It may indeed be use-
ful to supply identifiers for (the members of) some
sets, and, furthermore, to disallow any but compar-
ison operations on those identifiers. But this can
be done without incurring entity-associated refer-
ence inconvenience for all objects. Rather, one
can add the set "identifier" to the collection of
built-in sets (integer, real, etc.), together with
a function defined on dynamic sets returning an
identifier not yet used in that set.

7. SUMMARY

The IDE data model, like other walue networks, is
closely related to both the relational and func-
tional mcdels. However, the particular combination
of features used in the model render it especially
suitable for its intended use - as a data model for
both data bases and for the local data of program-
ming languages.

It is rather more expressive, and has more built-in
integrity than the relational model, yet permits
more concise, programming language oriented refer-
ence patterns. Furthermore, since it is value
rather than entity oriented, it does not require
the circumlocutions, and entity/property decisions
of the functional (and entity/relationship) models.

It should be emphasized that the IDE data model is a
data base rather than a knowledge base model. The
content and usage patterns of repositories serving
traditional application needs are not the same as
those of repositories used to support substantial
natural language applications. These differences
are an important subject for investigation as, in
the near future, we will want to understand how to
provide repositories susceptible to both types of
usage in a convenient fashion.

* Another justification occasionally given for the
entity orientation is that it makes it easier to
accommodate to changes in identifiers., For™
example, one can correct & "partno” error with-
out replacing all associations involving that
part. However, this problem can be handled in a
value-oriented model by providing an operation
which replaces all appearances of one member of
a set by another.

8.

ACKNOWLEDGMENTS

I thank Alex Hurwitz, Arvid Schmalz, and Rita Sum-
mers for their careful reviews and many helpful
comments .

9.

10.

11.

12.

13.

14.

15.

REFERENCES

P.S. Newman, "Towards an Integrated Develop-
ment Environment" IBM Systems Journal, 21, 1
(1982) 81-107

H.M. Markowitz, A. Malhotra, D.P. Pazel, "The
EAS-E Application Development Systems: Prin-
ciples and Language Summary", Communications
of the ACM, 27,8 (August 1984) 785-799

A.I. Wasserman, "The Data Management Facili-
ties of PLAIN", ACM-SIGMOD 1979 Intn'l Conf.
On Mgmt. of Data, (May 1979) 60-70

"ADAPLEX: Rationale and Reference Manual',
CCA-83~03, Computer Corporation of America
(1983)

E. Horowitz, A. Kemper, "AdaRel: A Relational
Extension of ADA" Technical Report TR-83-1309,
Computer Science Dept., University of Southern
California (1983) ’

P.P.-S. Chen, "The Entity-Relationship Model -
Toward a Unified View of Data, ACM Trans-
actions on Databasse Systems 1,1 (March 1976)
9-36

D.W. Shipman,- "The Functional Data Model and
the Data Language Daplex', ACM Transactions on
Database Systems, 6,1 (March 1981) 140-173

P. Buneman, R.E. Frankel, "FQL, A Functional
Query Language" ACM SIGMOD Int. Conf. on Man-
agement of Data, Boston, Mass. (May 1979) 52-
58

M. Senko, "DIAM II: The Binary Infological
Level and its Data Base Language FORAL", Proc.
Conf. on Data Abstraction, Definition, and
Structure, Salt Lake City (March 1976)

R. L. Griffith, "Three Principles of Represen-
tation for Semantic Networks', ACM Trans-
actions on Database Systems, 7,3 (September
1982) 417-442

G.C.H. Sharman, "A New Model of Relational
Data Base and High Level Languages", Technical
Report TR.12.136, IBM United Kingdom, (Feb.
1975)

M. Berthaud, M. Duponchel, "Toward a Formal
Language for Functional Specifications”,
Proc. IFIP Working Conf. on Constructing Qual-
ity Software, North Holland (1978)

D.M. Choy, R.J. Bamford, F.C. Tung, "A Data-
base Management System for Office Systems and
Advanced Workstations'", IBM Research Report
RJ4318 (June 1984)

P. Lyngbaek, D. McLeod, "Object Management in
Distributed Information Systems", ACM Trans-
actions on Office Information Systems, 2,2
(April 1984) 96-122

G. M. Nijssen, "Current Issues in Conceptual
Schema Concepts', in Architecture and Models
in Data Base Management Systems, North Holland
(1977) 31-66

255

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

J.T. Schwartz, "On Programming, An Interim
Report on the SETL Project", Computer Science
Department, Courant Inst. Math Sci., New York
University (1973)

P.S. Newman, "An Atomic Network Data Model",
IBM Scientific Center Report G320-2704, (June
1980)

C.J. Date, "Referential Integrity", Proc. Sev-
enth Intn'l Conf. on Very Large Data Bases,
(Sept. 1981) 2-12

J.4. Smith, D.C.P. Smith, "Database
Abstractions: Aggregation and Generaliza-
tion", ACM Transactions on Database Systems,

2,2 (June 1977) 105-133

F.G. Pagan, A Practical Guide to Algol 68,
John Wiley & Sons, 1978, p.20
J. W. Schmidt, M. Mall, "Abstraction Mech-
anisms for Database Programming", SIGPLAN
Notices 18, 6 (June 1983)83-93
R. L. Haskin, R.A. Lorie, "On Extending the
Functions of a Relational Database System",
Proc. ACM SIGMOD Conf. on Mgmt of Data, (June
1982) 207-212
P.S. Newman, "Module and Application Gener-
ation via Declarative Modules”, IBM Scientific
Center Report G320-2739, (October 1984)

T. Imielinski, W. Lipski, "A Systematic
Approach to Relational Database Theory", Proc
ACJ SIGMOD Conference on Mgmt ‘of Data, (June

1982) 8-14
W. Kent, Data and Reality, North Holland
(1978)

E.F. Codd, "Extending the Database Relational
Model to Capture More Meaning", ACM Trans-
actions on Database Systems 4,4 (Dec. 1979)
397-434

W. Kent, "Limitations of Record-Based Trforma-
tion Models", ACM Transactions on Database
Systems, 4,1, (March 1979) 107-131

J.F. Sowa,; Conceptual Structures: Information
Processing in Mind and Machine, Addison-Wes-
ley, Reading, MA (1984)

