
UJLtPLIJO, ` ..tt?Ncl I.7U'Y 

MODULE AND APPLICATION GENERATION 
VIA DECLARATIVE MODULES 

P. S. NEWMAN 



IBM LOS ANGELES SCIENTIFIC CENTER REPORTS 

FOR THE YEAR 1980 FOR THE YEAR 1982 

G32O-27O4 June 1980 
P. S. NEWMAN, An Atomic Network Programming 
Language (29 p.) 

0320.2705 July 198O 
J. G. SAKAMOTO, Use of DB/DC Data Dictionary to 
Support Business Systems Planning Studies: An 
Approach (24 p.) 

G32O-27O7 October 1980 
P. S. NEWMAN, Towards an Integrated Development 
Environment (29 p.) 

0320.2785.5 April 1980 
Compiled by KATHERINE HANSON, Abstracts of 
Los Angeles Scientific Center Reports (104 p.) 

FOR THE YEAR 1981 

G32O-27O8 September 1981 
M. M. PARKER, Enterprise Information Analysis: A 
Survey of Methodologies (32 p.) 

0320-2709 September 1981 
M. M. PARKER, Enterprise Information Analysis: An 
Application of Current Disciplines (86 p.) 

G32O-271O September 1981 
M. M. PARKER, Enterprise Information Analysis: A 
Proposal for Discipline Extension (24 p.) 

0320.2711 July 1981 
A. INSELBERG, N-Dimensional Graphics; Part 1 —
Lines and Hyperplanes (142 p.) 

632O.2712 September 1981 
S. A. JUROVICS, Daylight, Glazing, and Building 
Energy Minimization (19 p.) 

0320.2713 October 1981 
B. DIMSDALE, Conic Transformations (19 p.) 

0320-2714 October 1981 
S. H. LIN, Existential Dependencies in Relational 
Databases (80 p.) 

G320-2716 July 1982 
M. M. PARKER, Enterprise Information Analysis: 
Cost-Benefit Analysis of Information Systems Using 
PSL/PSA and the Yourdon Methodology (62 p.) 

G32O.2797 September 1982 
R. C. SUMMERS, An Overview of Computer Security 
(29 p.) 

0320-2718 October 1982 
R. J. HER RERA, Data Flow Analysis Aid (19 p.) 

(332O-2734 November 1982 
R. C. SUMMERS, M. EBRAHIMI, J. MARBERG, K. 
J. PERRY, R. B. TALMADGE, U. ZERNIK, RM: A 
System of Personal Machines and Service Machines 
(65 p.) 

0320.2736 December 1982 
C. M. GUMMING, Editor, 1982 Annual Report of the 
Los Angeles Scientific Center (3O p.) 

FOR THE YEAR 1983 

632O-2721 June 1983 
H. LEVY and D. W. LOW, A New Algorithm for 
Finding Small Cycle Cutsets (58 p.) 

0320-2735 February 1983 
G. SAKAMOTO, F. W. BALL, Document Generation 
with DCF and PSL/PSA: An Approach (11 p.) 

FOR THE YEAR 1984 

6320-2737 September 1984 
P. S. NEWMAN, An Approach to Unifying Inter-
Object Communication (15 p.) 

632O-2738 June 1984 
A. INSELBERG and M. REIF, Convexity in Parallel 
Coordinates (43 p.) 

G32O.2739 October 1984 
P. S. NEWMAN, Module and Application Generation 
via Declarative Modules (14 p.) 

The availability of reports is correct as of the printing date of this report. 



IBM Los Angeles Scientific Center Report No. G320-2739 

October 1984 

Module and Application Generation via Declarative Modules 

Paula S. Newman 

IBM Corporation 
Los Angeles Scientific Center 

11601 Wilshire Boulevard 
Los Angeles, California 90025 



Abstract 

This paper discusses a method for allowing declarative specification of 
some application components, such as screen input/output, together with 
procedural specification of others, with less disjointedness than is usu-
ally the case with complete or partial application generators. The method 
involves the use of programming units called "declarative modules", con-
taining linear-form data collections with generator-specific schemas. 
Equivalent data collections are passed by the compiler to generators, 
which return source program units in a base language. 

e 



1. Introduction 

The term "application generator" has been used to connote many different 
kinds of processors. In this paper use of the term is restricted to pro-
cessors which require a relatively small, primarily declarative specifi-
cation to produce all or part of an application. It does not include 
vehicles sometimes called "fourth generation languages" which generally 
include substantial procedural capabilities. 

The application generators of concern here usually fall into one of two 
classes: those intended to produce complete or almost complete applica-
tions, and those intended to produce specific application components, 
most frequently screen management components. 

While both types of generators are extremely helpful, improvements are 
needed in the area of their relationship to programming languages. The 
larger generators usually make provision for invoking procedural code 
(via "exits"), and the smaller generators are intended for use with such 
code. Yet the connections between generated and programmed application 
components are not smooth, and represent one source of the fragmentation 
which plagues programming environments. 

Two kinds of discontinuities are involved, relating to specification and 
communication respectively. The specification problem lies in the fact 
that generator inputs must be specified and stored separately from asso-
ciated procedural code. This affects application comprehensibility. One 
cannot, for example, examine a screen specification together with the 
functions which process the data obtained from the screen. 

The communication problem is one of interfaces; interfaces between gener-
ated and procedural code are designed to be both language and application 
independent, and, consequently, are at a rather low level. Currently this 

is a problem of usability. However, in the context of newer, 
strongly-typed languages such as ADATM' (DOD 1983), such interfaces are not 

only inconvenient, but are also incompatible with the intent of those lan-
guages. 

There have been some efforts to solve these problems, particularly for 
screen specification. Dialogue managers; such as the ISPF Dialogue Facil-
ity (1983), are explicitly designed to control interactions between gen-

erated screens and user-coded functions, thus allowing reasonable 

interaction between coded and generated components. However, they force 

control flow to be expressed in the rather stylized form required by the 

screen manager, and do not allow merging of generator input with proce-

dural code. 

Another approach in this area is that of language extensions for screens. 

LaFuente and Gries (1978). define a set of extensions to PASCAL for screen 

definition, and both Rowe and Schoens (1983), and Horowitz and Kemper 

3 ADA is a registered trade mark of the U. S. Government (Ada Joint Pro-

gram Office). 

1 



(1984), elaborate on this proposal in the context of extensions to other 
languages. 

The latter approach does not suffer from the control or source proximity 
problems posed by dialogue managers. However, the advisability of extend-
ing popular general-purpose languages in this way is questionable. It 
requires the selection of one kind of specification, for one kind of 
device interaction, in a era of rapid change in interactive i/o devices. 

A more general approach to application generation,, suggested by 
Ruiz-Herrera (1983), is the use of compilers designed for extensibility, 
i.e., designed to allow the addition of special-purpose syntax by users. 
A parser generator is assumed in the proposal, and the compiler extension 
procedure consists of extending the syntax of the language, and adding 
code-generation functions corresponding to the new parse-tree node types. 
One drawback of the approach is that its use is probably limited to pro-
fessionals trained in compilation techniques; it requires, for example, 
the ability to deal with the problems of obtaining non-ambiguous grammars. 
Another difficulty of the approach is that it renders programs non-porta-
ble, without sufficiently isolating the non-portable aspects. 

In this report, a technique is proposed which is more general than 
screen-oriented language extension, but does not have the problems asso-
ciated with ad-hoc compiler extension. Special programming constructs, 
called "declarative modules" are used as containers for generator inputs 
of varying types. A declarative module is delimited similarly to other 
programming units in some chosen base language, but, in some way„ identi-
fies a generator in its header. The primary content of the module is a 
linear form data collection, whose schema is generator-specific. When the 
compiler of the base language finds such a module; it loads a shareable 
repository with the specified content and makes it available to the speci-
fied generator. The generator accesses the data base to produce a module 
in the base language. 

Building or changing a generator using this approach requires only appli-
cation programming skills, namely knowledge of the base language and a 
data manipulation language, rather than compiler development skills. The 
approach also compares favorably with compiler extension in terms of por-
tability. Not only are those sections of the code .dependent on generators 
clearly delimited, but also the, generators, written in the base language, 
and generating code in the base language, are themselves portable. 

In the body of the paper, a concrete adaptation of the declarative module 
concept is developed, using ADA as the base language, and the .relational 
model for the linear-form data collections. To begin, the use of external 
data collections for generator input is illustrated, by example. Then, a 
linear form for relational data is specified, and used as the core of a 
declarative module, which can be-nested within a larger program. Declar-
ative modules are then extended to allow the embedding of procedural code. 

After introducing the basic approach, several applications are suggested. 
The final section of the paper reformulates the approach as a special case 

2 



of embedded language definition, with the latter being as general as com-
piler extension. 

ABC CORPORATION - OFFICE SYSTEM 

Select activity, then press enter 

Receive Mail 
Send Mail 
See Calendar 

Figure 1. Initial Screen 

Review Bulletins 
Schedule Meeting 

2. Data Collections for Application Specification 

While the main focus of the paper is on generator inputs within source 
programs, for expository purposes it is convenient to begin by considering 
the use of external data collections for generator input. 

Consider an application using a series of screens, the first of which is 
shown in Figure 1. This screen might be described to a screen generator 
using, for example, a data base containing a single relation, "Screens", 
as shown in Figure 2. 

This input presumes a generator capable of designing detailed screen 
arrangements, given relatively sketchy specifications (as suggested, by 
Rowe and. Schoens (1983)).. Thus the input indicates only that the screen, 
called "Act," is to contain two centered strings, followed by a menu, 
arranged in two columns.2

The relation might be loaded using standard data base access facilities 
or, to allow interactive screen design, via a generator-specific utility. 
After loading, the generator would be invoked to a file of programs in a 
chosen base language which can be used to produce the desired screen 
interaction. 

The generator output file might contain one function in the base language 
for every screen described. The screen-associated function would be 
responsible for the display of that ,screen, and might return a record 
structure containing one field for each value to be obtained from the 
application user via that screen. 

2 The purpose of- this report is to discuss an approach to application 
generation rather than a specific generator: Therefore the functions 
of the generator used in the examples are not described in great 
detail. 

3 



Screens Screen Seq Type Value 

'Act' 1 'justify '' center' 

'Act' 2 'const' 'ABC CORPORATION - OFFICE SYSTEM' 

'Act' 3 'const' 'Select activity, then press enter' 

'Act 4 'menugrp '' Activity' 

'Act' 4 'cols' '2' 
'Act' 4 'label' 'Null' 
'Act' 5 'sel' 'Receive Mail' 
'Act' 6 'sel' 'Send Mail' 
'Act' 7 'sel' 'See Calendar' 
'Act' 8 'sel' 'Review Bulletins' 
'Act' 9 'sel' 'Schedule Meeting' 
'Act' 10 'endgrp' 'Activity' 

Figure 2. Screen Description Data Base 

While almost any language might be used as a base, one having data 

abstraction capabilities is preferable. This choice allows the generated 

code to be seen not as a collection of separate programs, but, rather, as 

one encapsulated programming unit providing many operations. This is 

especially useful where the generated code must include definitions of 

shared data types and/or data. 

For example, if the selected base language were ADA, the screen generator 

assumed above might produce a package specification' and package body pro-

viding one function for each screen. The package specification produced 

might be as shown in Figure 3. Note. that the package contains' not only 

the declaration of the function produced by the generator, but also the 

declaration of the record type used to return the results of the inter-

action. 

The generated function might be used in a statement such as: 

case, Office.Act().Activity 
when 1 =_> .... ; 
when 2 = > .... ; 

end case; 

which decides on subsequent processing based on the "Activity" field of 
the record returned by Office.Act. 

' An ADA package specification describes the externally visible aspects 
of the package, e.g., type definitions and definitions of interfaces 
to externally accessible programming units contained in the package. 
The package body contains code for the latter, plus additional type 
definitions and programming units not accessible from the outside. 

4 



package Office is 

type Act_Record is 
record 

Activity: Integer 1. .5 
end record; 

function Act returns Act Record 

end Office; 

Figure 3. Package Specification Generated from Office Data Base 

the important point here is the smooth interface to the generated code. 
It is (a) simple to use, (b) tailored to the needs of the application, and 
(c) at the level of the base language. Moreover, it does not subvert the 
typing constraints of the base language. 

The body of the generated package might actually be very short, containing 
only some brief procedures communicating with larger, "canned" programs 
in a library associated with the generator. The latter communication 
might in fact involve awkward, general purpose interfaces, but the more 
complex, interfaces would be used by the generated code, not by the appli-
cation programmer. 

3. Declarative Modules 

The use of a data base for generator input is acceptable for the gener-
ation of complete applications, or for large parts of applications. How-
ever, for the generation of small components, such as individual screens, 
it is important to allow generator input to be embedded within procedural 
source code. 

"Declarative modules" are proposed for this purpose. Declarative modules 
consist of data collections expressed in linear form, and surrounded by 
program-unit boundaries consistent with those of the chosen base lan-
guage. 

To process declarative modules, compilers must be extended to parse the 
linear form data collections, and to pass their content to generators, 

which return program units in the base language for subsequent compila-

tion. 

(Note that some generators might themselves return declarative modules as 
output. This would be the case if generators were tailored and special-

ized by layering. For example, a screen generator with simple input 

requirements but constrained capabilities might be layered on more gener-

al facilities requiring more complex inputs.) 

5 



A. Non-Factored Representation 

Screens ['Act' 1 'just' 'center'], -
['Act' 2 'const' 'ABC CORPORATION - OFFICE SYSTEM'], 
['Act' 3 'const' 'Select activity, then press enter'], 
['Act' 4 'menugrp '' Activity'], 
['Act' 4 'cols' '2' ], 

B. Factored Representation 

Screens ['Act' [1 'just' 'center'], 
[2 'const' ''ABC CORPORATION - OFFICE SYSTEM'], 
[3 'const' 'Select activity, then press entei'], 
[4 ['menugrp '' Activity' ], ['cols' '2' ]], 

Figure 4. Linear Form Representations of Office Data Base 

3 

The precise syntax chosen for declarative modules depends, in part, both 
on the data model used for the generator inputs, and on the language. 
Some examples •of a possible syntax, given the continued assumption of the 
relational model and ADA, are given in this section.. The next section 
deals with some processing questions. 

To express a collection. of relations in linear form, each relation can be 
specified as a list of bracketed row specifications, as shown in Figure 4. 
Part A of the figure is a full linear representation of a relation. Part B 
is an alternative representation which is factored on duplicate left-most 
attribute values." 

To surround the data representation by a programming unit boundary, assum-
ing ADA as a base language, an alternative form of package specification 
can be used, ,shown in Figure 5. The header keyword "For" identifies the 
presence of a declarative module to the compiler. The use of a package 
variant seems appropriate as (a,) packages are the standard ADA method of 

4 The specification of data base content in linear form is not new. The 
best known example is probably PSL (Teichroew et.al., 1974), in which 
a linear form is used for the specification of the content of a data 
base containing application requirements. In the PSL case, the linear 
form requires a phrase-specific. mapping to the underlying data 
relationships. More regular methods, in which the linear form is a 
direct expression of the desired data base content, are given by Falk-
enburg (1976), and by Newman (1980), in conjunction with 
data-base-oriented associative networks. In all these cases, the 
emphasis is on using the linear form as a means of expressing data 
content in a concise and readable way. 

6 



Package Office For GenScreens is 

Database 
Screens ['Act' [1 'just' `center'], 

[2 'const' 'ABC CORPORATION - OFFICE SYSTEM'], 
[3 const' Select Activity, then press enter'], 
[4 '['menugrp " Activity'], ['cols' `2 ]], 
[5 'sel' 'Receive Mail' ], 
[6 'set' 'Send Mail' ], 
[7 'sel' 'See Calendar' ], 
[8 'sel' 'Review Bulletins'], 
[9 'sel' 'Schedule Meeting'], 
[10 'endgrp' 'Activity' ]] 

End Office; 

Figure 5. Declarative Package 

encapsulating information, and (b) it allows one form of package to be 
used in generating another. 

ABC CORPORATION - OFFICE SYSTEM 

Automated Calendar 

Fill, in information, then press enter 

Date Person 

Day _ 
Month _ 
Year 

Format 

Figure. 6. Calendar Request Screen 

Full Month 
Full Week 
One Day 

This section is completed by another example, the screen shown in Fig-
ure 6. This screen might be obtained by the declarative package shown in 
Figure 7, producing the generated package specification shown in Fig-
ure 8., 

7 



Package Calendar For GenScreens is 

Database 

Screens ['Cal' [1 'just' 'center'], 
[2 'const' ''ABC CORPORATION - OFFICE SYSTEM'] 

[3 'const' 'Automated Calendar'], 

[4 'const' 'Fill in information, then press enter'], 

[5 ['bgngrp' 'Info' ], ['cols' '2']], 

[6 'fldgrp' 'Date' ], 
[7 ['infld' 'Day' ], ['fmt' '2D']], 
[8 ['infld' 'Month' ], ['fmt' '2D']], 
[9 ['infld' 'Year' ], ['fmt' '2D']], 
[10 'endgrp' 'Date' ], 
[11 'infld' 'Person' ], 
[12 'menugrp '' Format' ], 
[13 'sel' 'Full Month' ], 
[14 'sel' 'Full Week' ], 
[15 'sal' 'One Day' ], 
[16 'endgrp' 'Format' ]'] 

End Calendar 

Figure 7. Calendar Screen Specification 

4. Declarative Module Processing 

As discussed above, the desired effect of the generation process is the 
replacement of the declarative module by a procedural module in the base 

language, for subsequent compilation. The general structure of the needed 

approach is shown below: 

Data 
> Shared Data Structure 

Compiler 
< 

Source 

Data 
 > 

Shared Data Structure < 
Source 

Generator 

In other words, the compiler is to parse the declarative section contain-
ing the generator input data, place the data into a shared structure, and 
pass control to the generator. The generator, in turn, is to return the 
source code for the generated module. 

This outline raises many questions, such as 

What declarative module structures should be used 

• What kinds of shared data structures should be used to for communi-
cation of the results 

8 



Package Calendar For GenScreens 

Type Cal Record is 
record 

Day: Integer range 1. .99 
Month: Integer range 1. .99 
Year: Integer range 1.. 99 
Person: String(1..15). 
Format: IntegerQ ..3) 

end record; 

Function Cal Returns Cal Record 

end Calendar; 

Figure 8. Generated Package for Calendar Screen 

• How should transfers of control between the compiler and the, generator 
be handled. 

Specific answers are best arrived at in the context of particular program-
ming languages and operating environments, but some guidelines can be sug-
gested. 

The general criterion for selecting declarative module implementations is 
the maintenance of independence between the compiler and the generators. 
It should be possible to add new generators at any time, without change to 
the compiler (and with minimal other adjustments). Thus, first of all, 
only one set of changes to the compiler should be necessary, adequate for 
processing all declarative sections. This implies that all declarative 
sections should be describable using the same grammar, and should be pro-
cessable, to point of transferring their content to a shared data struc-
ture, by the same adjunct semantic processes. 

This, in turn, implies that the data model used for the input, .and its 
linear-form expression, be chosen to allow this single grammar and proc-
essing. The relational model works well in this regard. The grammar of 
the linear form .can consist, for example, of a specification of a list of 
rows, each row consisting of a list of fields, and each field either a 
number or a quoted string. Semantic checking by the compiler can be lim-
ited to ensuring that all rows of the same relation have the same number 
of fields, and all values in the same column are of the same. type, with 
more extensive validation left to the generator. (Alternatively, a com-
piler might do more. detailed checking against a data definition in an 
accessible data-dictionary-like structure). 

The choice of a data model does not determine the choice of shared data 
collection. For example, the .use of linear form relations within the 
declarative modules does not require the use of a relational data base; 
their content can be passed via sequential files. Like the choice of data 
model, the choice of data collection should be chosen with compil-

9 



er/generator independence in mind. Thus, for example, the use of shared 

structures requiring detailed, generator-specific type definitions in the 

compiler should be avoided. 

The handling of transfers of control between the compiler and the genera-

tors is very dependent on the choices available within the operating envi-

ronment. Given an adequate command (shell) language, the transfers can be 

handled by interactive command sequences which alternately invoke the 

compiler and generators specified by compiler return values. (-This 

requires, of course, the saving of compiler intermediate data between inv-

ocations.) 

5. Embedding Procedures in Declarative Modules 

The above approach allows the generation of application components as long 

as they can be specified by purely declarative inputs. However, most 

application generators accept non-declarative specifications as well. 

For example, screen generators usually provide facilities for validating 

input values and for generating new values. 

The procedural capabilities of the base language can be used for such com-

putations. To allow this usage to be well structured requires that hand-

coded modules be included within declarative modules, following the 

declarative section. 

To extend declarative modules in this way requires an adjustment to the 

assumed division of labor between the generator and the compiler, because 

the generator can no longer return a complete programming unit. Instead, 

it can only return a partial unit, consisting of the declarations and the 

code generated for the declarative section, to be combined by the compiler 

with the nested programming units. In the A➢A case the generator would 
return a complete package specification (i.e., of the externally visible 
parts of the package) together with an incomplete package body. 

As an example of how this. might be used, the example of Figure 7 might be 
augmented in the following ways. 

• The definition of each input field might be accompanied by an indi-
cation of the existence of a validation procedure (e.g., having the 
same name as that of the field). 

• The definition of the screen might be augmented by the specification 
of an area explicitly devoted tb error messages. 

• The validation procedures might be included in the declarative module 
following the data section. The generator would be responsible for 
generating calls to those procedures. 

• The validation procedures would access a systematically-named record 
local to the generated package to obtain the values to be validated. 
They would return an error message if any problem existed, and a null 
message if not. 

10 



6. Cross-Component Referencing 

This section deals with a few additional aspects of the compiler/generator 
relationship, related to references between coded and generated compo-
nents. 

The first such aspect is the possibility of providing compiler assistance 
to generators to help them produce references to types and variables of 
scopes accessible from generated modules. It is true`that all information 
needed by a generator to produce such references could be supplied via 
user-coded generator inputs. However, to avoid the need for redundant 
user specifications, and to foster the correctness of the generated code, 
it is preferable for a compiler to automatically supply some global 
declarative_ information. To allow this.,, a representation of the base-lan-
guage declarative information in the chosen data model must be formulated. 
Then the declarative information could be passed to generators along with 
the generator-specific inputs. 

Then, for example, a global variable name might be used, in a generator 
input module, to describe the content of a field of a screen. The genera-
tor could determine details of the field (e.g., string length) from type 
information for the variable, and generate correct code to obtain the val-
ue of the field. 

Note that the global declarative information which could be supplied to a 
generator in this way is limited to that available given the necessary 
order of compilation/generation for the language involved. This brings us 
to the second subject to be mencioned here - namely the additional pro-
visions needed to allow the intermixing of compilation and generation for 
languages with (explicitly or implicitly) exported types and variables, 
such as ADA. In such cases, careful attention must be paid to the order of 
generation and compilation, to ensure that references to generated 
exported objects are not processed before information about those objects 
is available. In ADA, for example, this requires that generator input 
packages be expanded before package specifications referencing the gener-
ated packages are processed. 

A final consideration in this area relates to error handling. In general, 
the compiler should specially flag errors it finds when compiling gener-
ated code, to assist in tracing the errors to their sources. In some cas-
es, the errors will stem from faulty generators. In other cases, relating 
to cross-component referencing, the errors might stem from incorrect gen-
erator inputs not detectable by the generator. 

For example, the declarative part of a generator input module might refer-

ence a non-existent embedded module, resulting in an erroneous reference 
in the generated code. To assist in this area, the compiler might consult 

the responsible generator to determine the kind of user error which might 

have been involved, so as to provide an appropriate error message. 

11 



7. Applications 

A major advantage of general purpose declarative modules is that they are 

not restricted to screen specifications. Another impdrtant potential 
application of declarative modules is in the definition of program units 
representing data bases. The application is appropriate, both in the 

sense that data bases are generally defined declaratively, and in the 
sense that data base accessing usually consists of accessing a program 
(the DBMS) which owns an encapsulated physical representation of the data 
base. 

The application is useful in two ways. First, it would allow data base 
like structures to be defined, and accessed, as local data. (Data base 
models .are useful independently of whether the data is persistent or 
shared.) Second, in object-oriented systems, it would allow the specifi-
cation of data base objects in a manner consistent with program objects. 

Another potential application of the declarative module approach is in 
connection with parser generators, to reduce the logistic complexity of 
their use in producing compilers. Using a parser generator generally 
requires the following steps: (a) submitting the grammar to the generator, 
to obtain code which declares and initializes parse tables, and then (b) 
compiling that code together .with the parser skeleton to produce the pars-
ing phase of the compiler. Using the declarative module approach, the 
grammar would be specified in a declarative module embedded in the skele-
ton code, and the parsing phase would be produced in a single compilation 
step. 

Input to the parser generator might consist of a data base containing a 
relation with rows representing rules of the grammar, each rule containing 
the attributes: 

LHS RHS1 'RHS2  RHSn 

(with suitable prefixes or other means of distinguishing terminal from 
non-terminal strings, and null values for rules containing less than n 
elements on the right hand side). The size limitation for rules is not a 
serious problem, as most computer languages use short rules, and longer 
rules can be subdivided. 

The result of the generation might be two generated packages: 

• A package containing both the 
taking a string as input, and 
tree. 

A package representing a parse 
later compiler phases. 

generated parse tables, and a procedure 
using the parse tables to build a parse 

tree abstraction, usable after parse by 

12 



8. Declarative Modules as a Special Case 

In the introduction to this report it was mentioned that declarative mod-
ules could be seen as a special case of a more general approach to lan-
guage mixing. In this section the more general• approach is sketched, and 
declarative module processing is reformulated to conform to this view. 

In general, language mixing can be accomplished by associating a named 
generator with each of the languages involved, with the exception of a 
base language. Each such generator can be specified as a sequence of 
phases to be invoked by the compiler of the base language. Some of the 
phases, such as the parser, might be common (but operate on different 
parse tables). The generators would produce programming units in the base 
language, and implement a set of predetermined inter-language communi-
cation protocols.s

In this framework, generators accepting declarative modules can be seen as 
the simplest to produce, because they use large amounts of common code. 
Each such generator would have the following phases: 

• A common parser, using a common parse table. 

A parse tree processor, producing a set of relations. This could be 
implemented. as a common processor, executed interpretively to allow 
for the varying relational output schemas. 

• A generator-specific phase taking the relations as input, and produc-
ing base-language: code. 

Placing the declarative module approach in this framework suggests inter-
esting combinations. For example, one might construct an attractive 
screen generation facility by using linear-form declarations of screens 
together with simple correctness rules for fields, rather than requiring 
correctness checking functions in the base language. The augmented screen 
generator would use the common declarative parser and relation creation 
mechanisms to process the declarative parts of the generator input. 

9. Concluding Remarks 

Declarative-module-based application generators, which represent the cen-
tral focus of the proposal, have the following advantages. 

• They are susceptible to development and modification by users 

• They generate modifiable output code 

s One important use of language mixing is to allow the embedding of code 
in languages complementary to traditional procedural languages, such 
as logic programming languages. 

13 



• They relate well to procedural languages, both in terms of input text 

proximity, and output module communication. 

The declarative module approach is not quite as well suited to any partic-

ular purpose as the use of specialized program structures, either supplied 

with a language, or defined via extensible compilers. However, it avoids 

the tendency to language divergence implicit in either of the latter 
approaches. 

10. Acknowledgments 

I thank Gene Sakamoto, Alex Hurwitz, Nan Shu, and John Sowa for their 
helpful comments on earlier versions of this report. 

11. References 

1. E. Falkenberg, "Significations: The Key to Unify Data Base Manage-
ment", Information Systems 2, Pergamon Press (1976) 19-29 

2. E. Horowitz, A. Kemper, "High-Level Input/Output Facilities in a 
Database Programming Language", Technical Report"TR-84-307., Dept. 
of Computer Science, University of Southern California (June 1984) 

3. "Interactive System Productivity Facility, Dialog Management Serv-
ices". IBM Publication 5C34-2088-1 (May 1983) 

4. J.M. Lafuente, ➢. Gries, "Language Facilities for Programming User-
Computer Dialogues", IBM J. Res. Develop, 22,2 (March 1978) 145-158 

5. P. Lucas, "On the Structure of Application Programs", Lecture Notes 
in Computer Science 86: Abstract Software Specification, Springer 
Verlag (1980) 390-438 

6. P.S. Newman, "An Atomic Network Programming Language", IBM Scientif-
ic Center Report G320-2704 (June 1980) 

L.A. Rowe, K.A. Shoens, "Programming Language Constructs for Screen 
Definition", IEEE Transactions on Software Engineering, SE-9,1 
(January 1983.) 

8. G. Ruiz Herrera, "The Programmed Compiler", IEEE Computer (March 
1983) 135-139) 

9. D. Teichroew, et.al., "An Introduction to PSL/PSA", ISDOS Working 
Paper No. 86, Dept. of Ind. Eng., U. of Michigan, (March 1974) 

10. U.S. Department of Defense, "Reference Manual for the ADA Programming 
Language", MIL-STD 1815A (February 1983) 

14 



SCIENTIFIC CENTER REPORT INDEXING INFORMATION 

1- AUTHOR(S) 
Paula S. Newman 

2. TITLE 
Module and Application Generation via 
Declarative Modules 

3. ORIGINATING DEPARTMENT 

60G 

4. REPORT NUMBER 

G320-2739 

Sa. NUMBER OF PAGES 

14 

5b. NUM➢ER OF REFERENCES 
10 

9. SUBJECT INDEX TERMS 

Application Generators 

Screen Managers 

Programming Language 

6a. DATE COMPLETED 
August 1984 

6b. DATE OF INITIAL PRINTING 

November 1984 

6c. DATE OF-LAST PRINTING 

7. ABSTRACT: 

This paper discusses a method for allowing declarative specification of 
some application components, such as screen input/output, together with 
procedural specification of others, with less disjointedness than is usu-
ally the case with complete or partial application generators. The method 
involves the use of programming units called "declarative modules", con-
taining linear-form data collections with generator-specific schemas. 
Equivalent data collections are passed by the compiler to generators, 
which return source program units in a base language. 

B. REMARKS 



1Dm LUA AIVOCLCJ Dl,IC1V I Ir n. GCIV 1 CI1 VV I OIYC rVOLIMA'I IYna 

FOR THE YEAR 1982 FOR THE YEAR 1982 (Continued) 

F. W. BALL, J. G. SAKAMOTO, "Supporting Business 
Systems Planning Studies with the DB/DC Data 
Dictionary", IBM Systems Journal, Vol. 21, No. 1 
(1982). 

F. W. BALL J. G. SAiCAMOTO, "Supporting Business 
Systems Planning Studies with the DB/DC Data 
Dictionary", Database Management, November-
December Issue, Auerbach Information Management 
Series (1982). 

S. A. JUROVICS, "Daylight, Glazing, and Building 
Energy Minimization", ASHRAE Transactions, Vol. 88, 
Part 1 (1982). 

S A. JUROVICS, "The lI)lpact of Daylight.Utilization 
on Thermal and Lighting Loads: A Case Study", 
presented at ASHRAE Annual Meeting, Toronto, June 
1982. 

J. M. MARSHALL, "Systems Architect Apprentice 
System (SARA)", Proceedings of Corporate Symposium 
on Structured Logic, Yorktown, November (1982). 

P. S. NEWMAN, 'Towards an Integrated Development 
Environment', IBM Systems Journal, Vol. 21, No. 1 
(1982). 

M. M. PARKER, "Enterprise information Analysis: 
Cost-Benefit and the Data Managed System", IBM 
Systems Journal, Vol. 21, No.1 (1982). 

M. M. PARKER, "Toward .Cost-Benefit Analysis of Data 
Administration", SHARE Proceedings, Vol. 1, August 
1982. 

J. G. SAKAMOTO, "Use of DB/DC Data Dictionary to 
Support Business Systems Manning Studies: An 
Approach", The Economics of Information Processing, 
Vol. 1, Publisher: John Wiley & Sons Publishing Co. 
(1982). 

J. G. SAKAMOTO, "Use of DB/DC Data Dictionary to 
Support Business Systems Planning Studies: An 
Approach", Symposium on The Economics of Informa-
tion Processing, Sponsored by the IBM Systems Re-
search Institute (1982). 

N. C. SKI.), "Specifications of Forms Processing and 
Business Procedures for Office Automation", IEEE 
Transactions on Software Engineering, Vol. SE-S, No. 5 
(1982). 

N. C. SHU, D. M. CHOY, V. Y. LUM, "CPAS: An Office 
Procedure Automation System", IBM Systems Journal, 
Vol. 21, No.3 (1982). 

R. C. SUMMERS, "Computer Security", chapter of 
Computer Handbook, Publisher: Van Naustrand Rein-
hold Publishing (1982). 

FOR THE YEAR 1983 

C. WOOD, E. B. FERNANDEZ, "Minimization of 
Demand Paging for the LRU Stack Model of Program 
Behavior", information Processing Letters, Vol. 16, No. 
2(1983). 


