
AN APPROACH TO
UNIFYING INTER-OBJECT COMMUNICATION

P. S. NEWMAN

IBM LOS ANGELES SCIENTIFIC CENTER REPORTS

FOR THE YEAR 1980 FOR THE YEAR 1981 (Continued)

6320=2702 March 1980
K. EWUSI-MENSAH, Criteria for Decomposing an
Information System Into Its Subsystems for Business
Systems Planning (26 p.)

0320-2703 March 1980
K. EWUSI-MENSAH, Computer-Aided Modeling and
Analysis Techniques for Determining Management
Information Systems Requirements (30 p.)

6320.2704 June 1980
P. S. NEWMAN, An Atomic Network Programming
Language (29 p.)

6320.2705 July 1980
J. G. SAKAMOTO, Use of DB/DC Data Dictionary to
Support Business Systems Planning Studies: An
Approach (24 p.)

0320-2707 October 1980
P. S. NEWMAN, Towards an Integrated Development
Environment (29 p.)

2320.2785.5 April 1980
Compiled by KATHERINE HANSON, Abstracts of
Los Angeles Scientific Center Reports (104 p.)

FOR THE YEAR 1981

6320.2708 September 1981
M. M. PARKER, Enterprise Information Analysis: A
Survey of Methodologies (32 p.)

0320,2709 September 1981
M. M. PARKER, Enterprise Information Analysis: An
Application of Currant Disciplines (86 p.)

6320-2710 September 1981
M. M. PARKER, Enterprise Information Analysis: A
Proposal for Discipline Extension (24 p.)

G320 2711 July 1981
A. INSELBER6, N-Dimensional Graphics; Part 1 —
Lines and Hyperplanes (142 p.)

G320-2712 September 1981
S. A. JUROVICS, Daylight, Glazing, and Building
Energy Minimization (19 p.)

0320.2713 October 1981
B. DIMSDALE, Conic Transformations (19 p.)

G320-2714 October 1981
S. H.. LIN, Existential Dependencies in Relational
Databases (80 p.1

FOR THE YEAR 1982

0320.2716 July 1982
M. M. PARKER, Enterprise Information Analysis:
Cost-Benefit Analysis of Information Systems Using
PSL/PSA and the Yourdon Methodology (62 p:)

6320.2717 September 1982
R. C. SUMMERS, An Overview of Computer Security

• (28p.)

0320-2718 October 1982
R. J. HERRERA, Data Flow Analysis Aid (19 p.)

6320.2734 November 1982
R. C. SUMMERS, M. EBRAHIMI, J..MARBERG, K.
J: PERRY, R. B. TALMADGE, U. ZERNIK, RM: A.
System of Personal Machines and Service Machines
(65 p.)

0320.2736 December 1982
C. M. CUMMING, Editor, 1982 Annual Report of the
Los Angeles Scientific Center (30 p.)

FOR THE YEAR 1983

0320-2721 June 1983
H. LEVY and D. W. LOW, A New Algorithm for
Finding Small Cycle Outsets (58 p.)

6320-2735 Febntary 1983
G. SAKAMOTO, F. W. BALL, Document Generation
with DCF and PSL/PSA: An Approach (11.p.)

FOR THE YEAR 1984

0320.2737 September 1984
P. S. NEWMAN, An Approach to Unifying Inter-
Object Communication (15 p.)

The availability of reports is correct as of the printing date of this report.

IBM Los Angeles Scientific Center Report No. G320-2737

September 1984

An Approach to Unifying Inter-Object Communication

Paula S. Newman

IBM Corporation
Los Angeles Scientific Center

11601 Wilshire Boulevard
Los Angeles, California 90025

Abstract

Both data abstractions and asynchronous processes are useful types of pro-
gramming units, as are traditional functions and subroutines. However,
the incorporation of all four types in a single language poses problems of
language size and consistency.

This paper sketches an approach to providing functional equivalents of
these programming units, together with some aspects of co-routines, with
limited syntactic and semantic variation. Two types of programming units,
called processes and procs, and a set of closely-related inter-unit commu-
nication mechanisms are developed. Provisions for integrity are
addressed briefly.

1. Introduction

Programming languages usually provide one or more kinds of programming-
units, differing in definition, creation, behavior, and accessing. The
earliest high level languages, (e.g., FORTRAN, ALGOL), generally provided
three kinds of units - main programs, functions, and subroutines. Since
then, many other kinds have evolved, perhaps the most important of which
are the varied facilities for abstraction and concurrent programming.

There have been some (badly needed) recent efforts, such as [2, 14, 17,
18, 22], to understand and classify the dimensions along which programming
unit variation occurs. One result of these studies, which focus primarily
on approaches to concurrency, seems to be that much of the variation
encountered is useful, from the point of view of convenience in particular
application situations: For example:

• Fully asynchronous communication (send/receive), by a concurrent cal-
ler, maximizes potential parallelism, while synchonous communication
(procedure call and remote procedure call) provides implicit synchro-
nization, and is more succinct.

• Explicit message selection and response by a concurrent callee pro-
vides considerable flexibility, but procedure-like argument accept-
ance and return is more convenient (and expressive of intent) when
requests are to be handled one-by-one, in order of arrival.

• Data abstractions have many virtues. However, traditional procedures
can be more convenient, as they do not require separate, explicit cre-
ate and destroy operations. Also procedures are useful in defining
the individual operations of a data abstraction.,

Subroutine reference patterns are needed for stand-alone invocations,
while functional reference patterns are needed within expressions.

The utility of all these variations represents a design problem, in that
their incorporation into a single language seems to imply the use of four
or five kinds of programming units (functions, subroutines, data
abstractions, and one or more kinds of asynchronous processes) and associ-
ated communication forms.

In this paper, an approach is suggested for the subsumption of equivalents
of the above variations using only two programming units, and a set of
closely related communication methods.

The development is informal, and proceeds as follows. The basic program-
ming unit assumed, called a process, is introduced. A process is an asyn-
chronously operating abstraction with explicit message selection and
response. Following this, a chain of increasingly succinct forms for ref-
erencing this unit, ranging from full exploitation of asynchronism to
functional reference, is defined. The chain unifies, by abbreviation,
asynchronous, synchronous, data abstraction, subroutine and function ref-
erencing patterns. The connection between asynchronous and synchronous
referencing is made via a highly expressive request structure, useful in

1

its own right. Finally, an alternate programming unit, the proc, which
uses procedure-like request acceptance and response, is defined as a
shorthand process form.

The development is followed by a summary and discussion of related work.
The last sections of the paper 'address some questions of integrity and
performance raised by the language constructs proposed.

2. Processes

The basic programming unit assumed, the process, is defined so'as to meet
two objectives: (a) to allow the communication possibilities presented by
concurrent processing to be fully exploited, and (b) to allow concurrent
programs to be understood as data abstractions.

Exploiting the communication possibilities of concurrency implies not
requiring synchronization for data transmission. That is, the trans-
mission of data to a process should not require a sender wait, and the
acceptance of data by a process should be performed at a process-specified
point. This, in turn, implies that communication between concurrent proc-
esses is better modelled as the transmission of a message fo a queue, fol-
lowed by acceptance of the message into local variables of the receiver,
than as the association of arguments with formal parameters.

Full communication flexibility also implies that a process should not have
to accept messages in the order sent, or to respond to them in the order
accepted, or to respond, for that matter, at all. It is also desirable
that a (service-oriented) process should be able to respond to messages
sent from previously unknown sources.

Based on these considerations, a process is defined as a programming unit
which, once created, executes continuously, and has an associated queue.
Basic communication is obtained by: (a) asynchronous (non-blocking) mes-
sage sending 'facilities, and (b) message reception facilities which allow
a process to accept messages from its queue when convenient, and on a
selective basis.

The basic communication facilities are usable both by the provider of a
service (receive request, then send response), and by the requestor of a
service (send request, then receive response). Also, the message recep-
tion facilities permit a process to alternatively accept requests or
responses (to requests which it initiates).

Before describing syntax, some additional assumptions are made about pro-
cesses to allow them to be understood as data abstractions, to begin the
process of programming unit amalgamation. A data abstraction (ultimately
based on the'SIMULA [5] class concept, and further developed in CLU 110])
is understood here as an object which provides a number of services or
operations. It is persistent, that is, it remains in existence between
invocations, an'd maintains its own local data.

2

The •definition of a data abstraction is separate from its possibly many
instances. The use of persistent multiple instances requires that
instances be externally identified, e.g., by pointer, and that instance
identifiers qualify operation requests (e.g., "StackPtr.Pop()"). For
example, a stack abstraction might be referenced by "StackPtr.Pop()"',
where "StackPtr" identifies the instance of the abstraction, and "Pop"
indicates the desired operation.

To allow processes to be understood as data abstractions they must be
understood as instances of definitions, rather than as synonomous with
definitions. To provide an analog of data abstraction operator defi-
nition, process definitions contain message type declarations. Messages
are sequences of message elements, and message type declarations specify
sequences o£ element types. As messages are used both for requests and
for responses, process definitions contain declarations both for input
message types and output message types.

Multiple process definitions may declare message types with the same sim-
ple name, and thus unique message-type references require both a process
identifier and a simple name.

3. Basic Inter-Process Communication

Under the above assumptions, messages might be sent and received by the
statements shown in Figure 1.

SENDFISENDL Pointer.Msgtype (message element list)

RECEIVE rcv-option
ON [defnamel.]msgtypel (rcv-var-listl) WHERE boolexpl THEN stmtl
ON [defname2.]msgtype2 (rcv-var-list2) WHERE boolexp2 THEN stmt2

OTHERWISE stmt
END

Figure 1. Send and Receive Statements

Both SENDF and SENDL send a message to the queue of the process identified
by "Pointer". SENDF (send foreign) is used to send messages of type
"Pbinter.Msgtype", i.e., to send messages defined by the addressee. SENDL
(send local) is used to send messages of type "*.Msgtype", i.e., to send
messages declared by the sender. SENDF might be used to request services
provided by the addressee, while SENDL might be used to send responses to
requests.

The RECEIVE statement is a case structure ultimately deriving from the
guarded commands of [6], as do communication structures in a number of
languages (see [2] for an excellent survey). Messages on the receiving
process queue are compared with the ON clauses, in an order determined by

3

"rcv-option":' A message matches an ON clause if •it is of the specified
message type and the contained boolean expressioh (if present) is true.
Message types are qualified by "defnamei" if they are defined by the send-
er (the defname involved is the definition of the sender). The first
matching message found is copied, element by element, into the variables
of the associated "rcv-var-list".

Built-in functions are provided for use within the boolean expressions to
provide information about queued messages. For example, SENDER() would
return a pointer to the sender of the message being tested, to ,allow the
favoring of some senders over others. This approach has some resemblance
to that of PLITS [8]. The messages of the latter are standardized, in
that they contain only subsets of globally-known labelled fields, and can
be queried prior to receipt. Here, the messages themselves cannot be que-
ried, but information can be obtained about their senders, time of trans-
mission, queue positions, and sending transactions (see discussion of
integrity, further on).

Similar functions are needed to provide information about the last message
received, to allow out-of-order responses. For example, LASTSENDER()
might return a pointer to the sender of the last message received.

4. The Communication Abbreviation Chain

One interesting side effect of modelling abstractions as processes, with
full message transmission for both requests and responses, is particular-
ly important. This is the possibility of providing alternative responses
to a particular request, leading to rather expressive code. For example,
a. stack abstraction might distinguish between two types of responses to a
"Pop" operation: "Ok", accompanied by the popped element, and "Empty",
accompanied by a null message. The stack might then be referenced by the
sequence shown in Figure 2A, which clearly distinguishes between the
actions to be taken in the two cases.

However, this form is extremely longwinded, as compared with typical ,stack
abstraction reference syntax such as "X = StackPtr.Pop()", and the verbos-
ity interferes with readability. A chain of abbreviations for the above
SEND/RECEIVE sequence is therefore developed which allows users to. trade
off concurrency for readability, and brevity.

The REQUEST statement shown in Figure 2B is equivalent to the SEND/RECEIVE
sequence of 2A, but is more succinct and readable. It can be used when the
requestor cannot continue until a response is obtained, and both the
request and response messages are defined by the requestee. A similar
form is described in [11].

1 The "rcv-option"s are: (a) compare each message, in queue order, with
all ON clauses, (b) compare each ON clause, in the specified order,
with all messages, and (c) compare each ON clause, in random order,
with all messages.

4

A. SEND/RECEIVE SEQUENCE

SENDF StackPtr.PopO;
RECEIVE

ON StackDef.Ok(TopOfStack) WHERE SENDER() = StackPtr THEN
ON StackDef.Empty () WHERE SENDER() = StackPtr THEN ...
END;

B. REQUEST STATEMENT

REQUEST StackPtr.Pop ()
ON Ok (TopOfStack) THEN
ON Empty () THEN

C. SINGLE-LINE REQUEST

StackPtr.Pop (//TopOfStack)

D. FUNCTIONAL REQUEST

X = StackPtr.Pop() + Y

Figure 2. Request Abbreviation Chain

Further abbreviation requires that processes not only declare message
types, categorized as inputs, and outputs, but also that they relate inputs
to outputs, that is, that they indicate the outputs which may result from
each input. Then, when only one response can be obtained from. an input, a
single-line, call-like request can be used:

Pointer.InputMsgType(input-msg//response-msg-rcv-list)

The response message is assumed to be of the single possible type. The
applicability of this form can be broadened by distinguishing (declara-
tively) between normal and error responses, with the normal response
assumed in single line requests. For example, if the "Ok" response to the
stack "Pop" operation is classified as normal, and the "Empty" response as

an error, then the single-line-request shown in Figure 2C is acceptable.

"TopOfStack" is assumed to be a message reception list for a response of
type "Ok"; If a response of type "Empty" is received, it is treated as an

exception.

The last abbreviation, shown in Figure 2D, unifies subroutine and func-

tion reference. If an input message has only one normal response, .and

that response contains exactly one element, then the request may be made

as a functional reference. The single-element response is the value of

the reference.

5

5. Subsuming Procedure-Like Referencing

When only one request is to be made of a programming unit, it would be

desirable to allow procedure-like reference, in the sense of not requiring

explicit create and destroy operations. For example, if cosine is the

definition of a data abstraction, it should not be necessary to code the

sequence:

P = NEW(cosine)

DESTROY(P)

if the instance is to be referenced only once.

To do this, the form "definition%msg-type" is used, in the request state-
ment and its abbreviations. Thus the reference

cosine%(x)

specifies the sequence: (a) create an instance of cosine, (b) make the
indicated request, (c) destroy the instance after accepting the
response.'

6. Processes and Procs

The communication form abbreviations developed in the last section are
desiged for object reference convenience, allowing asynchronous processes
to be accessed by functional reference forms (when appropropriate). In
this section, the perspective adopted is that of the referenced object,
and forms are developed for more convenient acceptance of, and response
to, messages.

The problem addressed can be stated as follows. The RECEIVE and SEND
statements defined earlier provide considerable flexibility, allowing,
for example, a process to accept and/or respond to messages not in order
of arrival. However, if a process is to simply accept requests in order
of arrival, and respond to those requests before accepting others, these
statements are cumbersome and hide intent [14], especially as compared
with the implicit argument acceptance and return structures of classic
data abstractions and procedures.

2 The form Pjx), with message type omitted, can be used to reference
objects having only one declared' input message type. It is assumed
that instances of cosine fall into this class.

' Another alternative is to use the form "NEW(cosine).(x)" to simul-
taneously create and reference instances, and to rely on system mech-
anisms for the destruction of instances to which no pointers exist.
The selected alternative seems somewhat more explicit of intent, and•
(correctly) causes any subsequent reference to the instance (possible
if the instance distributes pointers to itself) to be understood as an
error.

6

4

To provide for this case, another programming unit is introduced, called a
"proc." The distinction between processes and procs is explained as fol-
lows: while processes have a single process-managed queue, procs have two
queues, one system-managed and one proc-managed. Message types declared
as inputs to the proc are placed on the system-managed queue, and activate
the proc when quiescent. A proc must begin by receiving the activating
message. While it is active, it may send and receive messages (from its
general queue) using SEND/RECEIVE and request forms. The proc remains
active until it responds to the activating message, at which point it is
quiesced.

To receive an activating message; and send the associated response, a proc
uses specialized syntax in place of a RECEIVE/SEND sequence. However, the
specialized syntax, shown in Figure 3 is related to RECEIVE/SEND, and, at
the same time, is more succinct.

The SRCV statement (Figure 3A) can be understood as a RECEIVE statement
which draws messages from the proc's system-managed queue, in order of
arrival. Since the queue may' contain only messages whose type is defined
locally, the local/foreign distinction is not needed. SRCV can be further
abbreviated to ERCV (Figure 3B) if the proc declares only one input mes-
sage type.

The response to an activating message is sent by the RETURN statement
(Figure 3C) which sends a message of the indicated local type to the send-
er of the last activating message received, and begins to wait for the
next one. The "REENTER label" clause is optional, and is discussed fur-
ther on.

Procs, while similar to processes in form, can be written with the clarity
of classic abstraction definitions, in which each operation is defined by
a separate procedure. To do this, the body of a proc is written as a sin-
gle SRCV statement. All processing for a particular input message type is
specified within a single ON clause of that statement:

SRCV
ON msgtype THEN DO

all processing for message
RETURN
END DO

END SRCV

The optional "REENTER label" clause of the RETURN statement' specifies that
the next activating message is to be received not at the beginning of the
code, but rather at the indicated label (which must identify an SRCV or
SRCV statement). This option allows procs to subsume the control-state
retention capabilities of co-routines (which preserve their control
states between activations [4]) and of path expressions (which constrain
the sequencing of abstraction operation requests [1, 3]).

Processes inherently subsume these capabilities because they determine at

what points they receive messages, and what messages are acceptable at

A. SRCV Statement

SRCV
ON msgtypel (rcv-var-listl) THEN stmtl;
ON msgtype2 (rcv-var-list2) THEN stmt2;

END;

B. ERCV Statement

ERCV (rcv-var-list)

C. RETURN Statement

RETURN msgtype (msg-element-list) REENTER label

Figure 3. Procs: Activating Message Reception and Response

each point. The REENTER clause extends this characteristic to procs,
without the coding overhead and verbosity of full-scale processes. More
generally, it allows procs to be coded in the style of very clear finite
state machine specifications, using SRCV statements to represent states,
and REENTER clauses to represent transitions.

7. Discussion

The development to this point provides, to a large degree, the facilities
of functions, subroutines, data abstractions, asynchronous processes,
co-routines and path expressions with only two, related, programming
units and a chain of reference form abbreviations.

The two programming units are processes and procs. Procs are similar to
processes, with the basic difference being that a proc uses more succinct
structures to accept its declared inputs, and send its declared responses.

The basic communication statements proposed are SEND/RECEIVE, with
REQUEST, single-line request, and functional-form request, and their
invoke (create, reference, destroy) equivalents, used as shorthand forms.

Most of the forms suggested are derived from forms in existing languages
(as mentioned above, [2] is an excellent survey). Furthermore, the
attempt to encompass different types of programming unit behaviors and
communication possibilities without inordinate syntactic and semantic
disjointedness is not new. The significance of the proposal lies, rather,
in the number of variations subsumed without either disjointedness or
functional limitations.

The unification of functions and subroutines is achieved as early as
ALGOL68 [21], which substitutes a single programming unit - the procedure.

8

An ALGOL68 procedure always returns a result, which may be declared to be

vacuous. Procedures with non-vacuous results correspond to functions,
but may be referenced by call, as long as the result is irrelevant."

However, more recent major languages do not preserve this unification.
Also, while they do attempt to limit communication-form differentiation,
this is often accomplished by limiting functionality. For example, ADATMS

[20] provides asynchronously and synchronously executing programming
units, but no special statements for communicating with asynchronous

units are used. In the ADA rendezvous mechanism, request messages are
sent as remote procedure calls, and responses are sent automatically, at

the end of the rendezvous, to the last sender. This reduces the number of
statements needed, but limits concurrency, and does not allow for out-of-

order responses.

One language which embodies significant communication construct inte-

gration is NIL [19]. Like the processes discussed here, NIL processes are

potentially asynchronous abstractions, which may be referenced both syn-

chronously and asynchronously. However, the actual communication forms

used differ, with those of NIL reflecting a rather unique, and interest-

ing, approach to correctness and security.

Subsuntption Extent. The facilities proposed subsume those of the larger
set (subroutines, functions, data abstractions, processes, co-routines,

and path expressions) only "to a large degree", not entirely. However,

the subsumed facilities are generally those considered most important.

For example, the "REENTER label" clause provides a co-routine-like capa-

bility, in that it allows a collection of procs to retain their control

states between activations. It does not allow substitution of activations

within a call stack, but use of this aspect of co-routines is probably

inadvisable.

Similarly, the data abstraction equivalents proposed do not completely

subsume the properties of procedures. Procedure-like reference succinct-

ness is preserved, as is the ability to define generic operators, in that

the same input message type may be declared by any number of process/proc

definitions.6 However, an exact analogy of procedure-based generic opera-

tor definition, in which all arguments participate in operator determi-

° The function/subroutine unification proposed in section 4 can be

adapted to traditional argument passing to produce a more powerful

capability than that of ALGOL68. To do this, parameters to a proce-

dure must be characterized (by declaration) as "used", "updated", or

"used and updated". Then, if the last parameter to a procedure is

declared as updated (only), the procedure can be referenced as a func-

tion with the last argument omitted.
6 ADA is a registered trade mark of the U. S. Government (Ada Joint Pro-

ject Office).
6 And operations of a data abstraction can be referenced in infix form.

For example, in SNALLTALK [24], "A+B" is interpreted as "A.+(B)",

i.e., the first operand is understood as the name of the data

abstraction providing the operation.

9

nation, is not proposed. While it could be provided by allowing message
elements to further qualify message type names (if extremely strong typing
is assumed), it is instead suggested that the use of procedure-based
generic operators, and the latter adaptation, is questionable. The use of
an unqualified generic operation can be misleading, as it tends to suggest
a single meaning to the reader of a program. In ̀ contrast, the form "ob-.
ject.operation" makes explicit the dependence of the meaning of the opera-
tion on the object referenced.

The most important features of more conventional programming units not
subsumed by the proposal, to this point, relate to synchronization and
performance. None of the implicit synchronization facilities provided by
synchronous calls or rendezvous mechanism's are included. What might be
considered a performance-related omission is' that of communication by
parameter (as opposed to messages). Synchronization is addressed in con-
nection with more general integrity issues, in the next section. Perform-
ance issues are discussed in the section following that.

8. Integrity Considerations

The specification of integrity facilities compatible with the program-
ming-unit/communication structures proposed is currently incomplete.
However, some aspects can be sketched, in overview form.

The integrity facilities under consideration are based on the data base
management concept o£ a transaction [7], whose wider applicability has
been the subject of extensive discussion and of concrete proposals for
adaptation [9, 12, 13, 16, 23]. The reason for adoption of this direction
is that transactions can be used for multiple aspects of integrity - atom-
icity, error handling, recovery, and synchronization - eliminating the
need for separate facilities.

The adaptation being considered here consists of specifying transactions
as qualified blocks, e.g.,

Label: DO'TRANS ONFAIL Labell

END

where DO ... END is a block form, and the optional "ONFAIL Label" clause
identifids another transaction block to which control is to. be passed if
the subject transaction,fails. Transactions may be.nested.

In general, when a transaction fails (because of program error, explicit
request, or interlock condition), the effects of the transaction on its
environment are backed out, control is passed to the indicated (ONFAIL)
alternative, and built-in functions may be referenced (in the alternative
block) to determine the reason for the failure.

Thus transactions, within individual program units, provide atomicity,
error handling, and recovery. The handling of these aspects across pro-

10

gram units, along with synchronization, requires the specification of the
relationship of transactions to programming units.

The first question to be dealt with in this regard is what transaction is
being executed when an object carries out a request. One approach is to
classify objects as either executing their own transactions, or executing
the transactions of others. Since procs (in contrast to processes) are
always executing an identifiable request, it seems natural to specify that
procs always (automatically) execute the transactions of others, while
processes normally execute their own transactions.

Other questions relate to the treatment of multi-threaded transactions
(transactions with contained asynchronism), which can be created by proc-
esses activating one or more procs while continuing to execute. Questions
in this area have not yet been answered satisfactorily. Until they are,
the generality of the proposal is limited by restricting requests made of
procs to synchronous forms (REQUEST and REQUEST shorthand). (Note, howev-,
er, that processes may be referenced by both synchronous and asynchronous
forms.)

Thus only processes may define outermost (effectively non-nested) trans-
actions. A request to a proc constitutes a kind of nested transaction, at
least in the sense that:

• The request is either executed to completion, or its effects are (with
some exceptions) backed out.

• During execution of a request by a proc A, any requests made by A are
further nested in this sense.

Procs may define their own, more deeply nested, transactions to allow them
to handle their own errors.

A proc may stand in one of two relationships to processes, established
when the proc is created. It may be owned by a process, or it may be
shared among processes. An owned proc is considered part of its owner,
and is recovered together with the recovery of any transaction of its own-
er. Requests to owned procs are thus fully nested transactions, in that
their effects are recovered even after return if the enclosing transaction
fails.

A shared proc is, in general, recovered only if it fails during a partic-
ular request. However, like a file (which can be modelled by a proc), a
shared proc may be reserved by a, process for the duration of a transaction
(by an extension to the transaction header clause). In this case it is
considered part of the process during that transaction, and is recovered
if the transaction fails.

Additional aspects of transactions, not discussed here, include pro-

visions for processes to view copies of procs (to avoid the need for res-

ervation), and provisions to allow processes to act if they were

processing the transactions of other processes. This is needed, for exam-

11

pie, to allow processes to .perform the role of data base management sys-
tems. -

In summary, the transaction facilities envisioned at this point seem to
subsume many facilities in the areas of atomicity, synchronization, error.
handling, and recovery, and seem consistent with the concurrency and com-
munication constructs described. It would be preferable, however, to
define a transaction facility which allowed for intra-transaction concur-
rency, both to restore the consistency of procs and processes, and for
other reasons not dealt with here.

9. Performance Questions

The primary device used to relate process and abstraction, reference pat-
terns is a message-based communication model, in which message, elements
are copied into local variables of the receiving object. This would seem
to have serious implications for performance. If sending a message causes
all message elements to be copied, then a single REQUEST 'statement, which
involves the sending of two messages (the request and the response), would
seem to require two copy steps. This contrasts badly with communication
by reference, which does not require any copying at all.

The restriction of proc referencing to synchronous forms, made for pur-
poses of defining a coherent integrity facility, also forms the basis for
the alleviation of this problem. It ensures that local variables refer-
enced in request message elements are not modified during request process-
ing, and, thus, that they may be passed, and referenced, by internal
pointer.

In most cases the restriction to synchronous reference is sufficient to
ensure that no copying is required on the input side, i.e., in the recep-
tion of a request. One appropriate method relates to those used for dif-
ferential file [15] maintenance in data base management systems. All
local variables in a proc which are used for request message reception are
understood to be referenced by internal pointer. When a message element
is received (by pointer) into a local variable, a directory of the blocks
(some storage size used as a subdivision) for the variable is constructed.
When a. change is made in the proc to the variable, only the affected block
is copied, and the directory updated accordingly.e

This can be done as long as the value .of the local proc variable need not
be saved between invocations. This would be true, for example, if it is
assigned a new value every time -a request is accepted. Otherwise copying
into local storage is needed to avoid inadvertent sharing.

' If it were not for the transaction problem, the adjustment would_con-
sist of classifying of some procs as "sprocs", and applying the syn-
chronous reference restriction only to them.

B The differential-file-like approach is also a means of providing the.
transaction recovery described in the preceding section.

12

Avoiding copying on the response side is more complex, but still tracta-
ble. Suppose that proc definitions (optionally) included the specifica-
tion of input/output combinations to be considered as possible update
cases. For example, one such specification might group input message type
A, element 1, with output message type B, element 2.

All references to those message types in the proc must use the same local
variable in the specified positions. For example, if an SRCV statement
receiving message type A receives element 1 into variable Vl, then all
SRCV statements receiving message type A must receive element 1 into Vl,
and all RETURN statements returning message type B must specify V1 as ele-
ment 2 of the return message. Furthermore, as above, the proc must be
written such that value of Vl need not be saved between invocations.

Given those specifications, no copying is needed for local variables of
the requestor also used in those positions, e.g., X in

REQUEST PTR.A (X,);
ON B (Y, X, ...);

The value returned for X within message type B will be the directory poin-
ter for B constructed earlier. The receipt of the returned value consists

of copying only the modified blocks. If, however, the variables used in
the two positions do not match, the response message element must be

copied.

10. Concluding Remarks

The programming unit types and inter-object communication statements pro-

posed here allow many types of object interactions, ranging from asynchro-

nous message processing to traditional function calls, to be expressed in

a highly consistent fashion. This is accomplished, for the most part, by

the use of a message-passing model throughout, and by the introduction of

a request structure, useful in its own right, to bridge the gap between

synchronous and asynchronous forms.

The statements described form a part of a very-high-level language called

PL/IDE (programming language for an integrated development environment),

currently being defined. The integrity-related aspects of the language

and execution environment are, at this point, only partially spe'cified.

The capabilities contemplated seem compatible with the described program-

ming unit behaviors, but are overly constraining. More work is needed in

this area.

11. Acknowledgements

I thank Dan Berry, Adolfo Di Mare, Nan Shu, John Sowa and Rita Summers for

their valuable comments and suggestions.

13

12. References

1. S. Andler, "Predicate Path Expressions" Conference Record of the
Sixth ACM Symp. on Principles of Prog. Lang., (January 1979).226-236

2. G.R. Andrews, F.B. Schneider, "Concepts and Notations for Concurrent
Programming", ACM Computing Surveys 15,1 (March 1983) 3-39 ,

3. R.H. Campbell, A.N. Habermann, "The Specification of Process Syn-
chronization by Path Expressions", Lecture Notes in Computer Sci-
ence, 16, Springer Verlag, New York 1974 (89-102)

4. M.E. Conway, "Design of a Separable Transition-Diagram Compiler",
Comm. of the ACM, 6 (1963) 396-408

5. 0.-J. Dahl, K. Nygaard, "SIMULA - An ALGOL Based, Simulation Lan-
guage", Comm. of the ACM (September 1966)

6. E.W. Dijkstra, "Guarded Commands, Nondeterminism, and Formal Deriva-
tion of Programs", Comm. of the ACM, 18, 8 (August 1975) 453-457

7. K.P. Eswaran,. J.N. Gray, R.A. Lone, I.L. Traiger; "The Notions of
Consistency and Predicate Locks in a Database System", Comm. of the
ACM, 19,11 (November 1976) 624-633

8. J.A. Feldman, "High Level Programming for Distributed Computing",
Comm. of the ACM 22,6 (June 1979(353-368

9. W.H. Kohler, "A Survey of Techniques for Synchronization and Recovery
in Decentralized Computer Systems", ACM Computing Surveys 13,2
(June 1981) 149-183

10. B. Liskov, "An Introduction. to CLU", Computation.Structures Group
Memo No. 136, Laboratory for Computer Science, Mass. Institute of
Technology, Cambridge, Mass. (1976)

11. B. Liskov, "Report on the Workshop on Fundamental Issues in Distrib-
uted Computing", ACM Operating Systems Review 15,3 (July 1981) 9-38

12. D.B. Lomet, "Process Structuring, Synchronization, and Recovery
Using Atomic Actions", Proc. ACM Conf. on Language Design for Reli-
able Software, SIGPLAN Notices 12,3 (March 1977) 95-100

13. B. Randell, P.A.Lee, P.C. Treleaven, "Reliability Issues in Comput-
ing Systems Design", ACM Computing Surveys 10,2 (June 1978) 123-165

14. M.L. Scott, "Messages vs. Remote Procs is a False Dichotomy", SIG-
PLAN Notices 18,5 (May 1983) 57-62

15. D.G. Severance, G.M. Lohman, "Differential Files: Their Application
to the Maintenance of Large Databases", ACM Trans. on Database Sys-
tems 1,3 (September 1976) 256-267

14

16. A.Z. Spector, P. M. Schwarz, "Transactions: A Construct for Reliable
Distributed Systems", ACM Operating Systems Review 17,9 (April
1983) 16-35

17. J.A. Stankovic, "Software Communication Mechanisms: Proc Calls ver-
sus Messages", IEEE Computer 15,4 (April 1982) 19-25

18. P.D. Stotts Jr., "A Comparative Survey of Concurrent Programming
Languages", SIGPLAN Notices 17, 10 (October 1982) 50-61

19. R.E. Strom, S. Yemini, "NIL: An Integrated Language and System for
Distributed Programming", Proc. SIGPLAN '83 Symp. on Prog. Lang.
Issues in Software Systems, SIGPLAN Notices 18, 6 (June 1983) 73-82

20. U.S. Department of Defense, "Reference Manual for the ADA Program-
ming Language", MIL-STD 1815A (February 1983)

21. A. van Wijngaarden, B.J. Mallioux, J.E.L.Peck, C.H.A. Koster, "Re-
port on the Algorithmic Language ALGOL 68", Numerical Mathematics

14 (1969) 79-218

22. P. Wegner, S.A. Smolka, "Processes, Tasks, and Monitors: A Compara-
ble Study of Concurrent Programming Primitives", IEEE Trans. on
Software Engineering SE-9,4 (July 1983) 446-462

23. W. Weihl, B. Liskov, "Specification and Implementation of Resilient,
Atomic Data Types", Proc. SIGPLAN Symp. on Prog. Lang. Issues in
Software Systems (June 1983) 53-64

24. Xerox Learning Research Group, "The Smalltalk-80 System", Byte 6,8
(August 1981) 36-48

15

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1_ AUTHOR(S)

Paula S. Newman

2. TITLE An Approach to Unifying Inter-Object
Communication

3. ORIGINATING DEPARTMENT

60G

4. REPORT NUMBER

G 320-2737

5a. NUMBER OF PAGES
15

5b. NUMBER OF REFERENCES
24

9. SUBJECT INDEX TERMS

Programming Language
Data Abstraction
Inter-process Communication
Distributed Processing
Object-Oriented Language

6a. DATE COMPLETED

October 15, 1983

6b. DATE OF INITIAL PRINTING

August 1984

6c. DATE OF LAST PRINTING

7. ABSTRACT:

Both data abstractions and asynchronous processes are useful types
of programming units, as are traditional functions and subroutines.

However, the incorpoation of all four types in a single language
poses problems of language size and consistency.

This paper sketches an approach to providing functional equivalents
of these programming units, togather with some aspects of co-routines,
with limited syntactic and semantic variation. Two types of
programming units, called processes and procs, and a set of
closely-related inter-unit communication mechanisms are developed.

Provisions for integity are addressed briefly.

8. REMARKS:

IBM LOS ANGELES SCIENTIFIC CENTER OUTSIDE PUBLICATIONS

FOR THE YEAR 1982 FOR THE YEAR 1982 (Continued)

F. W. BALL, J. G. SAKAMOTO, "Supporting Business
Systems Planning Studies with the DB/DC Data
Dictionary", IBM Systems Journal, Vol. 21, No. 1
(1982).

F. W. BALL, J. G. SAKAMOTO, "Supporting Business
Systems Planning Studies with the D8/DC Data
Dictionary", Database Management, November-
December Issue, Auerbach Information Management
Series (1982).

S. A. JUROVICS, "Daylight, Glazing, and Building
Energy Minimization", ASHRAE Transactions, Vol. 88, '
Part 1 (1982).

S. A. JUROVICS, "The Impact of Daylight Utilization
on Thermal and Lighting Loads: A Case Study",
presented at ASHRAE Annual Meeting, Toronto, June
1982.

J. M. MARSHALL, "Systems Architect Apprentice
System (SARA)", Proceedings of Corporate Symposium
on Structured Logic, Yorktown, November (1982).

P. S. NEWMAN, "Towards an Integrated Development
Environment", IBM Systems Journal, Vol. 21, No. 1
(1982).

M. M. PARKER, "Enterprise Information Analysis:
Cost-Benefit and the Data Managed System", IBM
Systems Journal, Vol. 21, No.1 (1982).

M. M. PARKER, "Toward Cost-Benefit Analysis of Data
Administration", SHARE Proceedings, Vol. 1, August
1982.

J. G. •SAKAMOTO, "Use of DB/DC Data Dictionary to
Support Business Systems Planning Studies: An
Approach", The Economics of Information Processing,
Vol. 1, Publisher: John Wiley & Sons Publishing Co.
(1982).

J. G. SAKAMOTO, "Use of DB/DC Data Dictionary to
Support Business. Systems Planning Studies: An
Approach", Symposium on The Economics of Informa-
tion Processing, Sponsored by the IBM Systems Re-
search Institute (1982)•

N. C. SHU; "Specifications of Forms Processing and
Business Procedures for Office Automation", IEEE
Transactions on Software Engineering, Vol. SE-8, No. 5
(1982).

N. C. SHU, D. M. CHOY, V. Y.,LUM, "CPAS: An Office
Procedure Automation System", IBM Systems Journal,
Vol. 21, No.3 (1982).

R. C. SUMMERS, "Computer Security", chapter of
Computer Handbook, Publisher: Van Naustrand Rein-
hold Publishing (1982).

FOR THE YEAR 1983

C. WOOD, E. B. FERNANDEZ, "Minimization of
Demand Paging for the LRU Stack Model of Program
Behavior", Information Processing Letters, Vol. 16, No.
2(1983).

