
PL/IDE GRAMMAR

P. S. Newman and I. S. Zukerman

Printed 07/20/83

C

a

OPERATORS AND DELIMITERS

C

C

C

1 <RELOP> ::= EQ
2 I NEQ
3 l GT
4 I LT
5 b GE
6 I LE
7 <OROP> :.= OR
8 <ANDOP> :.= AND
9 <NOTOP> ::= NOT
10 <LOGICAL VALUE> ::= TRUE
11 J FALSE
12 <SET RELOP> ::= EQS
13 I NEQS
14 I IN
15 I NOTIN
16 [CTNS
17 <SETUP> :.= UNION
18 INTER
19 MINUS
20 <NULL> ::= NULL
21 <ADDOP> ::_ +
22 -
23 <MULTOP> :._ *
24 1 l
25 <EXPOP>
26 <CONCATENATION UP>
27 <ASSIGNMENT UP> :._ _
28 I +=
29 -_
30 <QUESTION MARK> :._ 7
31 <COLON>
32 <LEFT TUPLE BR> :._ <
33 <RIGHT TUPLE BR>
34 <LEFT QUERY BR> :._ {
35 <RIGHT QUERY BR> }
36 <LEFT SET BR> :._
37 <RIGHT SET BR>
38 <LEFT AGG BR> [
39 <RIGHT AGG BR>]
40 <LEFT TEMPLATE BR> ["i
41 <RIGHT TEMPLATE BR>
42 <SUBLIST SEP> :._ /-
43 <DONT CARE> :._
44 <ARGUMENT PREFIX>
45 <DOT>
46 <PCT>
47 <NONEXISTENT>
48 <RELPREFIX>

operators and delimiters 1

EXPLICIT SETS AND TUPLES

C

C

223 <SET> :._ <LEFT SET BR> <SET LIST> <RIGHT SET BR>
224 <LEFT SET BR> <RIGHT SET BR>
225 <SET LIST> :._ <EXPRESSION>
226 <SET LIST> , <EXPRESSION>
227 <TUPLE> :._ <LEFT TUPLE BR> <TUPLE LIST> <RIGHT TUPLE BR>
228 <TUPLE LIST> :._ <TUPLE ELEMENT>
229 <TUPLE LIST> , <TUPLE ELEMENT>
230 <TUPLE ELEMENT> :._ <EXPRESSION>
231 <DONT CARE>

<QUESTION MARK>

A <SET> has the following format: { expl, exp2,...,expn *} where n>=0 .
The language does not have sets of sets, therefore a semantic check has to
be performed in order to verify that expi 1<=i<=n evaluates to a scalar or
a tuple.

A <TUPLE> has the following format: < elementl,...,elementn > where n>=1.

A <TUPLE ELEMENT> may be either an expression (which evaluates to a tuple
or a scalar), a don't care symbol ('*') or a question mark symbol ('7').
The don't care symbol may be used in set relational operations. In this
case, it means that the value of the attribute in the corresponding column
is not important to the result of the comparison.
The question mark symbol can be used as a tuple element only at particular
points within the BASIC AGGREGATE CONSTRUCTOR (see explanation on aggre-
gates below).

The following examples will illustrate the usage of the above described
constructs:

1. { A+B,13,2t'tX ':}
2. {* <D,F>,<X,Z> *}
3. < "ABC",<"DEF",F(X)> >

The first example is straightforward. The second example represents a set,
whose members are tuples.

The third example represents a tuple, whose first member is a string and
whose second member is itself a tuple.

O explicit sets and tuples 3

SIMPLE SET EXPRESSIONS

C

C

163 <EXPRESSION> :._ <BOOLEAN TERM>
164 <EXPRESSION> <OROP> <BOOLEAN TERM>
165 <BOOLEAN TERM> :._ <BOOLEAN FACTOR>
166 <BOOLEAN TERM> <ANDOP> <BOOLEAN FACTOR>
167 <BOOLEAN FACTOR> :._ <SET RELATION>
168 I <NOTOP> <SET RELATION>
169 .:_ <RELATION>
170 <PREDICATE ABBREVIATION>
171 <SET RELATION> <SET RELOP> <RELATION>
172 <SET RELATION> <SET RELOP> <PREDICATE ABBREVIATION>
173 <SET EXP>
174 <SET EXP> <RELOP> <SET EXP>
175 <SET EXP> :._ <ARITHMETIC EXP>
176 <SET EXP> <SETUP> <ARITHMETIC EXP>
179 <ARITHMETIC EXP> :._ <TERM>
180 <ARITHMETIC EXP>
181 <TERM> :._ <FACTOR>
182 <TERM> <SULTOP> <FACTOR>
183 <FACTOR> :._ <SIGNED PRIMARY>
184 I <FACTOR> <EXPOP> <SIGNED PRIMARY>
185 <SIGNED PRIMARY> : _ <CHAR EXP>
186 I <ADDOP> <CHAR EXP>
187 <CHAR EXP> :._ <PRIMARY>
188 <CHAR EXP> <CONCATENATION OP>
189 <PRIMARY> :._ <UNSIGNED NUMBER>
190 (<EXPRESSION>)
191 <REFERENCE>
192 <SELECTION VAR>
193 <EXIST QUANT>
194 <LOGICAL VALUE>
195 <CHARSTRNG>
196 <SET>
197 <TUPLE>
198 <QUERY SET>
199 <NULL>
200 <PREDICATE ABBREVIATION> :._ <IDENTIFIER> <COLON>
201 I <IDENTIFIER> <DOT> <IDENTIFIER>
202 <SELECTION VAR> :._ <QUESTION MARK> <IDENTIFIER>
203 <EXIST QUANT> :._ <QUESTION MARK> <QUESTION MARK>
204 <UNSIGNED NUMBER> :.= <INTEGER>

<REAL>

<SET RELATION>

<RELATION>

<ADDOP> <TERM>

<PRIMARY>

<TUPLE>
<COLON> <TUPLE>

<IDENTIFIER>

Before launching into the explanation of the simple expressions of PL/IDE
it should be noted that the above given BNF does not express type consid-
erations. It only represents the basic skeleton of legitimate PL/IDE
expressions.

PL/IDE contains arithmetic and boolean expressions present in most lan-
guages. The salient features in PL/IDE expressions are:

0 simple set expressions 5

• set expressions - contain operations of union, intersection and sub-
straction of sets. These operations have equal precedence and are per-
formed from left to right.

• Set relational expressions - contain comparison operations between
sets. The following comparison operations are featured in this lan-
guage:

A CTNS B (containment),
A IN B (membership),
A NOTIN B,
A EQS B (set equality)
A NEQS B (set inequality)

The main difference in the usage of set relational operators and "sim-
ple" relational operators (e.g: CT, LT, etc...) is that the former can
appear in sequence in a meaningful expression, whereas the latter can
appear only once. This., because relational operators expect arithme-
tic or string operands, whereas set-relational operators accept any
sets (or scalars) as operands (as long as they are compatible in
type). The following example will illustrate this point:

ACTNSB INC
AGTBLTC

In the first expression the user wants to check whether A contains B
and then check whether the result (TRUE or FALSE) is in C (where C is a
boolean set). The second expression is meaningless.

• Predicate abbreviation's this construct represents a limited and
abbreviated version of the membership set-relational operation. As
with relational operations, the result of a predicate abbreviation is
a boolean. Notice that this. construct requires a tuple after the
colon. However this does not constrain predicate abbreviations to be
used with tuples only, since tuple brackets may enclose an arbitrary
expression as long as it evaluates to a scalar or tuple (see the above
given explanation on tuples). The following example illustrates the
usage of this construct:

X AND A:<Y,5>
where A:<Y,5> is equivalent to <Y,5> IN A

Due to the introduction of set expressions, the rules of precedence
between operators in PL/IDE differ from the rules of precedence in other
languages. The following table represents the rules of precedence in
PL/IDE:

6 PL/IDE GRAMMAR

C

C

precedence type operator

high string concatenation I ~
unary additive
exponential

unary + -

multiplicative - /
additive binary + -
set UNION INTER MINUS
relational EQ NEQ OT GE LT LE
set relational EQS NEQS CTNS IN NOTIN
boolean primary NOT
boolean AND

low boolean OR

These rules of precedence apply only for type-compatible operations (i.e:
operations between arithmetic and string values are not allowed). The
arithmetic, string and boolean operators accept as operands only scalars
(or sets defined as unary sets) of numeric, character and boolean type
respectively. The set and set-relational operators accept as operands
sets, tuples or scalars of compatible type. The relational operators
accept either numeric or character string operators.

The following basic constructs (primaries) do not appear in other lan-
guages and bear some explanation:

selection variables - these are the variables used in iteration struc-
tures and query sets (see explanation below). They can not appear on
the left hand side of an assignment, and values can only be implicitly
assigned to them during iteration or query set construction.

existential quantifiers - used in "traditional" database queries,

sets, tuples (explained above) and query sets (see explanation fur-
ther on).

The following examples illustrate the usage of expressions in PL/IDE:

1. A GT CS I"ABCD"
2. X+5 UNION B
3. B UNION C INTER D
4. XGTYEQS MLTN
5. F LE G NEQS C NOTIN D

The first example shows a comparison operation between two character
strings, namely A and the string resulting from the concatenation of C

with "ABCD". The concatenation takes precedence over the relational oper-

ation. Like in other languages, string comparison is performed in lexico-

graphic order.

C simple set expressions 7

The second example features an arithmetic operation (between scalars)
followed by a set operation. In this case the result of X+5 is appended to
the set B (if not already there).

The third example shows a sequence of set operations. As mentioned above,
the operations are performed from left to right.

Examples 4 and 5 are of special interest: in example 4 the scalar rela-
tional operations (GT and LT) take precedence over the set relational
operation (EQS). Thus, the two scalar operations are performed first and
the result is compared by means of the EQS operation. In example 5 the
scalar relational operation is performed first and the set relational
operations (NEQS and NOTIN) are performed from left to right. Thus,
although examples 4 and 5 present expressions similar in syntax, their
semantics are different.

0

8 PL/IDE GRAMMAR 0

REFERENCES

205 <REFERENCE> :._ <REFID> <ACTUAL ARGUMENT PART>
206 J <REF PREFIX> <REFID> <ACTUAL ARGUMENT PART>
207 <REFID>
208 <REF PREFIX> ::= T'
209 I'
210 <ACTUAL ARGUMENT PART> ()
211 (<ACTUAL ARGUMENT LIST>)
212 <ACTUAL ARGUMENT LIST> :._ <ACTUAL ARGUMENT>
213 ≤ACTUAL ARGUMENT LIST> , <ACTUAL ARGUMENT>
214 <ACTUAL ARGUMENT> :.= <QUESTION MARK>
215 <DONT CARE>
216 <ARGUMENT PREFIX> <EXPRESSION>
217 <ARG EXPRESSION>
235 <ARG EXPRESSION> :._ <EXPRESSION>
236 I <AGGCONSTR>

<OBJECT ID>
237 I <EXTRACTOR> <LIM PART>
173 <LIM PART>
174 I (<EXPRESSION>)
220 <REFID> :._ <IDENTIFIER>
221 <IDENTIFIER> <DOT> <IDENTIFIER>
222 I <IDENTIFIER> <PCT> <IDENTIFIER>
223 <OBJECT ID> :._ <IDENTIFIER> <DOT> <DOT>

a

0

A <REFERENCE> is a construct that represents either a reference to a
literal set or a functional request or invocation.

A legitimate <REFID> (reference identifier) may be one of the following:

<identifier>
<identifier>.<identifier> (see explanation on REQUEST)
<identifier>%<identifier> (see explanation on INVOKE)

A reference identifier may be followed by an argument part, which may con-
tain an arbitrary number of arguments.

Conceptually there are three kinds of references:

Local set references - which refer to sets local to the current
module,

Standard function references - which are references as we know them
from other programming languages, and

• Literal function references - which may refer to one of the following:

— Local sets followed by argument lists, or

references 9

Functions which accept no arguments, and return sets, followed by
argument lists. A literal function reference implies that the
returned set is applied as a function to the argument list.

A standard function reference may include as arguments: expressions, <AG-
GREGATE CONSTRUCTOR>s, <AGGREGATE EXTRACTOR>s optionally followed by a
<LIM PART> (see explanation below) or <OBJECT IDENTIFIER>s. The latter is
a dereferenced pointer to an object (which is a copy of the object itself,
as opposed to a pointer to the object). Arguments in PL/IDE are passed by
value. An argument may be prefixed by the following symbol: "1" (termed
"argument prefix"). This means that if the formal parameter is a scalar
and the actual argument is a set, the function reference is repeated for
each member of the set. In this case, the result is the union of the
returned sets. The following tables will better illustrate this concept:

1. F(a)

2. F(ja)

formal

actual

scalar set

scalar o.k set of one

set error o.k

formal

actual

scalar set

scalar o.k set of one

set repeat o.k

3. F(jal,a2,...,jai,...,an) - option No. 2 is activated for the
prefixed arguments and option No. 1 is activated for the rest.

In this manner the user can perform nl*..ini`... function activations in
a single call (where ni is the number of elements in argument i 1<=i<=n ,
and argument i is prefixed).

10 PL/IDE GRAMMAR

a

•a t

A standard function reference can be modified in the following way:
T'<reference identifier> - returns a set of tuples:

C

O

<i,"expected result of the £unction">

where i is a different integer for each tuple. Because of the added inte-
ger, the modified function will "repeat" all the identical elements in the
"expected result of the function" part. This modifier is useful in calcu-
lating statistical functions for which duplicates are necesary (e.g: AVG,
SUM, etc).

A literal function reference may be envisioned as a somewhat restricted
selection-projection operation performed on a database relation. In this
context, each argument position corresponds to an attribute in the
relation.

In order to select all the tuples for which attribute i has certain
values, these values have to be entered in the position corresponding to
attribute i. Any valid set expression may be entered as such an argument,
however aggregate constructors and extractors are not allowed in this con-
text (since the language does not support sets of aggregates). The argu-
ments can be optionally prefixed with the argument prefix symbol, however
for literal function references the function will be repeated even if the
arguments are not prefixed.

A projection is performed by entering a question mark ("7") for each
attribute to be projected and a "don't care" symbol ("k") for each attri-
bute to be eliminated from the final result. The user may terminate the
function designator at any point by entering a right parenthesis. This
causes the remaining attributes to be projected.

A literal function reference can be modified by the following prefixes:

• T'<reference identifier> - same as for standard function references,
and

I'<reference identifier> - returns the inverse of the normal
referent. This modifier may be applied only to functions returning
sets of binary tuples. The result is actually a reordering of the
arguments.

The following examples will illustrate the usage of this construct:

1. VARl
2. T'COST(X,Y,Z)
3. PART _SUPPLIER("12345",?,',?,"ELM ST. 10024")
4. PART SUPPLIER({" "12345","56789","34567" }, e,)

5. COST(t{' "12345","56789","34567" *) ,Y, Z)

The first example is straightforward. The second example features a func-
tional invocation of COST, which expects three scalar parameters and nor-
mally returns a single salary. The illustrated reference returns a tuple,
due to the presence of the prefix "T".

O references 11

The third and fourth example feature a literal function reference to
PART SUPPLIER. This function returns a relation whose first attribute is
part-number and whose last attribute is street-address (the other attri-
butes are irrelevant). In example 3 the user requests the second and
fourth attribute of those tuples whose part-number is "12345" and whose
street-address is "ELM ST. 10024". Notice that the third attribute is to
be omitted. In example 4 the user requests the third, fourth and last
attribute of the tuples whose part-number is "12345" or "56789" or
"34567". Recall that for literal function references the function acti-
vation is repeated for each member of the set.

The fifth example presents a reference to the COST object from example 2.
However in this. case, the first argument is a set prefixed by a "fl". This
means that COST is to be activated once for each member of the set. (If
the argument prefix were omitted the system would respond with an error
message, since COST expects a scalar as its first argument.)

c

12 PL/IDE GRAMMAR 0

QUERY SET EXPRESSIONS

232 <QUERY SET> :._ <LEFT QUERY BR> <QUERY> <RIGHT QUERY BR>
233 <QUERY> :._ <FROM BGN>
234 <FROM BGN> WHERE <EXPRESSION>
235 I <QUERY BGN> WHERE <EXPRESSION>
236 <FROM BGN> :._ <QUERY BGN> FROM <REFERENCE>
237 <QUERY BGN> :._ <QUERY QUAL> <QUERY BASE>
238 I <QUERY BASE>
239 <QUERY QUAL> ::= ALL
240 I EACH
241 I ANY
242 I THE
243 <QUERY BASE> :._ <REFERENCE>
244 <TUPLE>
245 <SELECTION VAR>

A <QUERY SET> is a special kind of expression, which when evaluated
returns a set. A query set can be used wherever an explicit set could be
used. The general format of a query set is:

{ elementl FROM <function designator> WHERE <expression> }

C

Either the FROM clause or the WHERE clause may be omitted, however at
least one of them has to appear in a query set. (Note that the FROM clause
is an abbreviation of the WHERE clause, since " x FROM A " is equivalent to
" x WHERE x IN A " .) The expression in the WHERE clause has to be boolean.

elementl has to be a single item, e.g: a <SELECTION VARIABLE>, a <REFER-
ENCE> or a <TUPLE>. This is to alert the user to the fact that elementl
has to be a legitimate member of a set. Notice that this syntax still ena-
bles the user to enter arbitrary expressions in place of elementl, pro-
vided they are enclosed by tuple brackets. The user also has to ensure
that elementl contains at least one selection variable.

elementl may be prefixed by the following qualifiers: ALL or EACH (this is
the default and implies the return of all qualifying results), ANY (im-
plies one arbitrarily chosen qualifying result) and THE (implies that the
result set contains only one member).

The following examples will illustrate the use of this construct:

1. { <?X,?Y> FROM DB1.A WHERE G(?X) GT 5 AND ?Y LT 8 }

2. { EACH <?X+10> WHERE ?X IN { ?Y FROM DB2.0 } }

3. <?X,?Y,?Z> WHERE <?X,?Y,??W> IN SETA AND FUNC1:<?Z,??W>

In the first example, the user requests all tuples from set A in database
DB1 which fulfill the condition in the WHERE clause. Of special interest
is the second example, which contains nested query sets.

0 query set expressions 13

The last example can be best rephrased as follows: all tuples of the form
<?X,?Y,?Z> where there exists a value (??W) such that <?X,?Y,??W> belongs
to SETA and <?Z,??W> is a tuple in the literal function FUNC1. Note the
use of selection variables to extract the required tuples.

14 PL/IDE GRAMMAR

AGGREGATE EXPRESSIONS

Aggregate expressions enable the user to perform operations on collections
of sets. With this construct, several sets may be grouped under one name,
and one set may be part of different aggregates. There are three types of
aggregate expressions:

• aggregate constructors - explained in the first subsection,

• aggregate extractors - explained in the second subsection, and

• references returning aggregates - which are functional references as
seen above, whose result is one aggregate (implicitly returned), or
references to declared paths (which are implicit extractors).

Aggregate extractors and references returning aggregates may participate
in assignment statements (both on the right and left hand side). Whereas
aggregate constructors can only appear in the right hand side of assign-
ment statements. All three forms may be passed as arguments and may also
appear as operands to the UNION, INTER and MINUS operators. Before elabo-
rating on the usages of these expressions, a description is in order.

AGGREGATE CONSTRUCTORS

aggregate expressions 15

136 <AGGCONSTR> :._ <LEFT AGO BR> <BASICAGG> <RIGHT AGG BR>
137 <LEFT TEMPLATE BR> <TEMPLATEDAGG> <RIGHT TEMPLATE BR>
138 <BASICAGG> :._ <IDENTIFIER> <ELEMENTLIST> -
139 J <BASICAGG> <IDENTIFIER> <ELEMENTLIST>
140 <ELEMENTLIST> :._ <AGG EXPRESSION> <BASICAGG CONTINUATION>
141 I <ELEMENTLIST> , <AGG EXPRESSION> <BASICAGG CONTINUATION>
142 <BASICAGG CONTINUATION>
143 I <LEFT AGO BR> <BASICAGGCONSTR> <RIGHT AGO BR>
144 <BASICAGGCONSTR> :._ <RELPREFIX> <IDENTIFIER> <ELEMENTLIST>
145 <IDENTIFIER> <ELEMENTLIST>
146 I <BASICAGGCONSTR> <RELPREFIX> <IDENTIFIER> <ELEMENTLIST>
147 I <BASICAGGCONSTR> <IDENTIFIER> <ELEMENTLIST>
148 <AGG EXPRESSION$:._ <EXPRESSION>
149 I <QUERY>
150 <TEMPLATEDAGG> :._ <RELIDLIST> <SUBLIST SEP> <TEMPLATEDLIST>
151 <RELI➢LIST> :._ <IDENTIFIER> <RELIDHEADER>
152 j <RELIDLIST> <IDENTIFIER> <RELIDHEADER>
153 <RELIDHEADER>
154 I <LEFT TEMPLATE BR> <RELIDSUBLIST> <RIGHT TEMPLATE BR>
155 <RELIDSUBLIST> :._ <RELPREFIX> <IDENTIFIER> <RELIDHEADER>
156 I <IDENTIFIER> <RELIDHEADER>
157 I <RELIDSUBLIST> <RELPREFIX> <IDENTIFIER> <RELIDHEADER>
158 <RELIDSUBLIST> <IDENTIFIER> <RELIDHEADER>

<TEMPLATEDLIST> :._ <TEMPLATEDRELIST>
160 I <TEMPLATEDLIST> <TEMPLATEDRELIST>
161 <TEMPLATEDRELIST> :._ <TEMPLATEDELEMENTLIST>
162 I <NONEXISTENT>
163 <TEMPLATEDELEMENTLIST> :._ <TEMPLATED PRIMARY> <TEMPLATEDAGGCONT>
164 <TEMPLATEDELEMENTLIST> , <TEMPLATED PRIMARY> <TEMPLATEDAGGCONT>
165 <TEMPLATEDAGGCONT>
166 <LEFT TEMPLATE BR> <TEMPLATEDAGGCONSTR> <RIGHT TEMPLATE BR>
167 <TEMPLATEDAGGCONSTR> :._ <TEMPLATEDRELIST>
168 <RELPREFIX> <TEMPLATEDRELIST>
169 I <TEMPLATEDAGGCONSTR> <TEMPLATEDRELIST>
170 I <TEMPLATEDAGOCONSTR> <RELPREFIX> <TEMPLATEDRELIST>
171 <TEMPLATED PRIMARY> :._ <TEMPLATED NUMBER>
172 (<CHARSTRNG>
173 I <TEMPLATED TUPLE>
174 <TEMPLATED NUMBER> :._ <UNSIGNED NUMBER>
175 I <ADDOP> <UNSIGNED NUMBER>
176 <TEMPLATED TUPLE> :._ <LEFT TUPLE BR> <TEMPLATED TUPLELIST>

<RIGHT TUPLE BR>
177 <TEMPLATED TUPLELIST> :._ <TEMPLATED PRIMARY>
178 j <TEMPLATED TUPLELIST> , <TEMPLATED PRIMARY>

The basic aggregate constructor <BASICAGG> establishes a temporary
unnamed aggregate by defining its sets and assigning values to them. The
use of this construct iW best demonstrated by an example:

16 PL/IDE GRAMMAR

1. .;Ati ,

[AGENT "Ann E."
(HAS TERR "N.Y" , "N.J"

HAS COMM .10 [COMM TYPE "A" ::TDATE "9/82"]

1,
"Bob M." [HAS TERR "Pa."]

This aggregate constructor builds the following sets:

AGENT HAS TERR HAS COMM
"Ann E." <"Ann E.","N.Y"> <"Ann E.",.10>
"Bob M." <"Ann E.","N.J">

<"Bob M.","Pa.">

TDATE
<<"Ann E.",.10>,"9/82">

COMM TYPE

The following facts should be noted in this example:

• A data element can be either an arbitrary expression or a query (which
is a query set without the braces). In general, an expression in an
aggregate constructor, has to evaluate to a scalar. However, a set
expression can be introduced at any "leaf" in the aggregate construc-
tor. In this case, it precludes further modifications of the
aggregate, and it is equivalent to an assignment statement. The fol-
lowing expression illustrates this point:

[A X UNION Y] is equivalent to A = X UNION Y

When a data element is a query, the user can create an aggregate by
means of a single (iterative) expression. For example, the following
expression

[A EACH ?T FROM DB1.A

[

1

puts
join
join

R1 DB1.R1(?T) R2 DB1.R2(?T)]

in set A all tuples from set DB1.A. It creates set R1 from the
of set A and set DB1.R1 and finally it creates set R2 from the
of set A and set DB1.R2.

• Elements of sets are separated by commas. If an element is "modified"
by an aggregate constructor, a comma still has to be inserted before
the next element (e.g: between "Ann E." and "Bob P1.").

• The last element of a set is followed either by a right aggregate
brace(']'), or by the name of the next set.

• If a set name S is embedded in a hierarchy (like COMM_TYPE), it must
be the name of a tuple-set. This means that the rightmost value
assigned to Si (immediately above set S in the hierarchy), is to par-
ticipate in the tuples being assigned to set S.

aggregate expressions 17

In order to create a set S, whose tuples contain the last tuple
assigned to 81 (formed by values cascading from the top of the hierar-
chy and the rightmost value), the set name S should be prefixed by a
double colon (like in ::TDATE).

The basic aggregate constructor may be also used to create "n-tuples". The
following example will best illustrate this usage:

[WAREHOUSE "N.J" [PWQ <"P1",?,5> , <"P2",7,7> j]

This aggregate constructor builds the following sets:

WAREHOUSE
"N.J"

PWQ (Part-Warehouse-Quantity)
<"P1" "N. J" 5>
<"P2" "N. J" 7>

As' stated above, tuples with question marks are only allowed in basic
aggregate constructors. Notice also, that no double colons should be used
when building "n-tuples", since they are meaningless in this context.

The templated aggregate constructor <TEMPLATEDAGG> is more succint than
the basic aggregate constructor. It features a header which contains a
template of set names. This header is followed by the values assigned to
those names. The correspondence between set names and values is
positional. Thus the user can perform bulk loading by means of this con-
struct. The above given example will be now repeated in templated form:

[* .AGENT [HAS_TERR HAS COMM [COMM TYPE ::TDATE]]

// "Ann E_" ["N.Y" ,"NJ" .10 ["A" •
:"9/82"

]]e

1:]

"Bob M." ["Pa." j

The templated constructor differs from the basic constructor in a few
details:

• Only data primitives are allowed in this construct, i.e: numbers,
character strings and tuples (which contain numbers and/or character
strings only). This is because in bulk loading the data usually is of
this form.

• Since the data is entered in bulk, a device to signal absence of data
is necessary. This function is performed by the symbol "C".

• In order to enforce consistency in the user, a double colon is
required both in the header and in the data.

AGGREGATE EXTRACTORS

179 <EXTRACTOR> :._ <DOT> <LEFT AGG BR> <RELIDSUBLIST> <RIGHT AGG BR>
180 <IDENTIFIER> <DOT> <LEFT AGG BR> <RELIDSUBLIST> <RIGHT AGG BR>

18 PL/IDE GRAMMAR

U

a

Aggregate <EXTRACTOR>s are complex object references that return aggre-
gates.
The basic structure of an aggregate extractor is the same as the structure
of the HEADER of the templated aggregate constructor (see <TEMPLATEDAGG>.
above). Notice however, that the extractor is preceded by a dot, and
optionally by an .identifier (which is the name of the object where the
sets mentioned in the <RELIDSUBLIST> are declared). When the identifier
is absent, it means that these sets are local to the current module.
When the <LIM PART> is present, the leftmost set in the extractor is
intersected with the expression in the <LIM PART>. This form is valid only
when the extractor is passed as an argument or used on the right hand side
of an assignment statement.

The meaning of this construct is best conveyed by an example:

DB1.[A [B C [D]]]

Set A is first extracted from object DB1. Then the sets

A. natural_join B and A natural_join C

named B and C respectively are built. Notice that the type of the first
"column" in sets B and C has to be compatible with the type of set A.
Finally the set C natural_join D (named D) is constructed.

The user should notice that aggregate extractors are an abbreviated ver-
sion of the above seen basic aggregate constructors for some special
cases. The following example will illustrate this point:

DB1.[A [BC]] (exp)
is equivalent to
[A EACH ?T IN (DB1.A INTER exp)

[B DB1.B(?T) C DB1.C(?T)]

Although it was stated above that extractors can be used on the left hand
side of assigment statements, it should be noted that only flat explicit
extractors or declared flat paths can be used in such a context.

USAGE OF AGGREGATE EXPRESSIONS

Now that the user is more familiar with these expressions, some remarks
regarding their usage are necessary.
As stated above, aggregate expressions may be used in the following
instances:

• As operands of set operators (UNION, INTER and MINUS) - in this case,
sets of the same name are located in the participating aggregates, and
the specified operation is performed between matching sets. The
remaining sets are part of the resulting aggregate for a UNION opera-

C aggregate expressions 19

tion or are eliminated from the result for an INTER operation. For a
MINUS operation only the "unmatched" sets of the left operand appear
in the result.
For example, if we perform these set operations on the following
aggregates:

AGG1 = DB1.[A B C]
AGG2 = DB2.[D C A]

where DB1 and 1182 are two different objects.

The resulting aggregate will contain the following sets:

operation UNION INTER MINUS

sets
in
resulting
aggregate

DB1.A UNION DB2.A
DB1.0 UNION DB2.0
DB1.B
DB2.D

DB1.A INTER DB2.A
]JB1.0 INTER DB2.0

DB1.A MINUS DB2.A
DB1.0 MINUS DB2.0
DB1.B

In assignment statements - explained later on (see CONTROL
STATEMENTS), and

•As arguments to a reference - in this case the name of the aggregate
may be passed as the argument, however the target reference should be
able to operate directly on the sets in the aggregate (with the set
names locally defined) .

Notice that in all these uses of aggregates, the names of the sets inside
the aggregates are crucial to the outcome of the specified operation.
Thus, in order to perfom an operation between sets with different names
(or not to perform an operation between equally named sets), the user
should be able to "change" the name of the set for the duration of the
operation. This can be done by a renaming built-in function.

The currently featured renaming function has the following structure:

RENAME(aggregate_identifier,renaming set)

where the renaming set is either an expression that returns a set or an
explicit set of tuples of the following form:

{* <oldnamel,newnamel>,<oldname2,newname2>,... '}

where oldname is the current name of the set and newname is the name to be
used during the operation. If the set oldname does not exist in the aggre-

CU

U

20 PL/IDE GRAMMAR

gate, the corresponding tuple is ignored. Conversely, if newname is a name
already in use by the current module, an error message is issued.

The renaming function may be also used to the right of functional refer-
ences returning aggregates.

We will now perform the above demonstrated INTER operation between AGG1
and AGG2 with the help of the renaming function:

AGGl INTER RENAME(AGG2,{* <A,X>,<D,B> })

In this example, set A in AGG2 has been renamed to X (thus precluding its
participation in the intersection operation) and set D in AGG2 has been
renamed to B (achieving the opposite result). The result of the inter-
section will be an aggregate containing the following sets:

DB1.B INTER DB2.D
DB1.0 INTER DB2.0

aggregate expressions 21

COMMUNICATION STATEMENTS

0

C

81 <RETURN STMT> : .= RETURN <RETURN PART> <REENTRY PART>
82 I RETURN <REENTRY PART>
83 RETURN <IDENTIFIER> <RETURN PART> <REENTRY PART>
84 I RETURN <IDENTIFIER> <REENTRY PART>
85 <RETURN PART> :._ ()
86 I (<RETURN LIST>)
87 <RETURN LIST> :._ <ARG EXPRESSION>
88 I <RETURN LIST> , <ARG EXPRESSION>
89 <REENTRY PART>
90 I REENTRY <IDENTIFIER>
91 <SEND STMT> :.= SENDF <REFERENCE> <VIA PART>
92 j SENDL <REFERENCE> <VIA PART>
93 <VIA PART> ::_
94 I VIA <EXPRESSION>
95 <ASYNC RCV STMT> RCV <QPROC> ; <RCV ON PART> <END STMT>
96 RCV <QPROC> <SELECTION VAR> ; <RCV ON PART> <END STMT>
97 <QPROC>
98 FIRST
100 I SEQ
101 <RCV ON PART> :._
102 I <RCV ON STMT LIST> ;
103 <RCV ON STMT LIST> :._ <RCV ON STMT>
104 I <RCV ON STMT LIST> ; <RCV ON STMT>
105 <RCV ON STMT> : .= ONL <IDENTIFIER> <ON CONTINUATION>
106 ONF <IDENTIFIER> <DOT> <IDENTIFIER> <ON CONTINUATION>
107 <ON CONTINUATION> = (<TARGET PART>)
108 I (<TARGET PART>) WHERE <EXPRESSION>
109 I (<TARGET PART>) THEN <UNLABELLED BASIC STMT>
110 I (<TARGET PART>) WHERE <EXPRESSION>

THEN <UNLABELLED BASIC STMT>
111 <TARGET PART>
112 <TARGET LIST>
113 <SYNC RCV STMT> :.= SRCV ; <SRCV ON> <END STMT>
123 <ERCV STMT> :.= ERCV (<TARGET PART>)

ERCV <IDENTIFIER> (<TARGET PART>)
114 <SRCV ON>
115 I <ON STMT LIST> ;
116 <ON STMT LIST> :._ <ON STMT>
117 I <ON STMT LIST> ; <ON STMT>
118 <REQUEST STMT> : ._ <TRANS> REQ <REQ ID> ; <SRCV ON> <END STMT>

<REQ ID> :._ <IDENTIFIER> <DOT>
<IDENTIFIER> <DOT> <IDENTIFIER>

119 <ON STMT> :.= ON <IDENTIFIER> (<TARGET PART>)
120 j ON <IDENTIFIER> (<TARGET PART>) THEN <UNLABELLFD BASIC STMT>
121 <INVOKE STMT> :.= INVOKE <REFERENCE> ; <SRCV ON> <END STMT>
122 <SHORT ARGS> :._ (<SUBLIST SEP> <TARGET PART>)
123 (<ACTUAL ARGUMENT LIST> <SUBLIST SEP> <TARGET PART>)

C communication statements 23

The <RETURN STMT> transfers control from the current module to the calling
module. It returns a list of set and/or aggregate expressions, whose types
must match those declared in association with the return message class
(the <IDENTIFIER> in RETURN <IDENTIFIER>). If the entire object has only
one return message class, it need not be explicitly specified in the

RETURN statement. When the <REENTRY PART> is added to the return state-
ment, it means that upon the next activation of the current module,
execution will start at the statement indicated in the reentry part.

The <SEND STMT> is used for asynchronous communication. The SENDF state-
ment sends a list of arguments whose type is defined by a "message class"
of the recipient, whereas the SENDL statement sends arguments whose type
is defined by a message class of the sender. The VIA part may be omitted,
however when it is appended to the statement, it is used to identify a
message as part of a specific conversation.

There are two kinds of receive statements: synchronous and asynchronous.
Both of them have the basic structure of a case statement: when a message
is received, different ON statements are executed, depending on the "mes-
sage class" accompanying the message. The execution of an ON statement
implies passing the arguments of the message to the formal parameters of
the target statement and then executing its "THEN" part.

An asynchronous receive statement <ASYNC RCV STMT> has a header and an
ON-part.

The header may contain a selection variable, which receives the identifier
of the message. (Notice that one conversation may contain many messages.)
The header may also contain a directive regarding the order in which mes-
sages in the queue are to be considered for acceptance:

• FIRST - choose the message which matches the earliest ON statement,
• SEQ - (default option) choose the message according to FIFO (First In

First Out) policy.

The ON part may contain local or foreign ON statements, ONL and ONF
respectively. In the former, only the name of the message class is neces-
sary. In the latter, both the name of the message class and the name of the
module in which the message class is defined, have to be stated.

An ON statement may be accompanied by a guard expression (in the form of a
WHERE clause), which specifies conditions necessary for the execution of
the statement. A message in the queue satisfies a case if it is of the
expected message class and the guard expression is fulfilled. If the first
message in the queue does not satisfy any case (while operating in SEQ
mode), then the next message is tried. If none of the messages can be
matched, a retry operation is performed (since a new message that matches
may have arrived in the meantime). The other messages may be directed at
RCV statements which are executed later on (and could be triggered by one
of the current ON statements). When operating in the FIRST mode, if the
first case can not be satisfied by any message in the queue, then the next
case is tried, etc... If none of the messages match a case, a retry is per-
formed.

24 PL/IDE GRAMMAR U

The synchronous receive statement <SYNC RCV STNT> does not distinguish
between foreign and local message classes, since it expects all the refer-
enced message classes to be locally defined. Also, this statement has no
queue processing options and no guards in the ON statements.

A synchronous module returns results and control to the calling module by
means of a <RETURN STTIT> (see explanation above). This differs from the
asynchronous module, which responds to messages by means of SEND state-
ments.

The entry receive statement, <ERCV STTST>, contains an optional message
class part and a formal parameter part. This statement is used when only
one of the entries in a module can be legally accessed from outside the
module. Such a situation may arise when the module has only one entry, or
alternatively, if it contains several entries, of which all but one are
internal to the module and can not be accessed from outside it.

Notice that the ERCV statement is actually an abbreviation of the SRCV
statement. Thus the following statements are equivalent:

C

ERCV idl (parml, parm2,
and
SRCV;

ON idl (parml, parm2, ...) THEN EXIT;
END;

);

The <REQUEST STNT> represents a composite form of communication. It
requires all associated message classes to be foreign (i.e: defined by the
called module) since they can be viewed as procedures in an abstract data
type module. Notice that if an object contains only one entry point, it is
necessary to enter the object name, followed by a dot.

The request statement can be used both for asynchronous and synchronous
communication. When it is used between asynchronous machines, a dialog
identifier (see explanation of <SEND STTiT> above) is automatically
attached to the message (if it is not already specified by the user). The
receiver then appends the same dialog identifier to the response. This
enables the system to recognize the response to a specific request among
several messages in the queue.

When the request statement is used to communicate with a synchronous
object, it passes the message and the machine to the object and waits
until a response message is returned. The body of a request statement
contains ON statements (like the synchronous receive statements). However
in this case they check the message class of the result of the request.

The <INVOKE STNT> is a shorthand form of object reference, which-creates
an instance of the specified definition, makes a REQUEST of the instance
and finally destroys the instance (after receiving the response). Like the
<REQUEST STTIT>, the ON part of an invoke statement checks the message
class of the result of the invocation.

The following examples illustrate the usage of the above given constructs:

0 communication statements 25

1.

SENDF CREDIT.CHK (CUSTID) VIA I+1 ;

MOD CREDIT PROCESS;

RCV ?J;
ONL CHK (CUSTID) THEN DO;
IF LIM (CUSTID) GT 0 THEN SENDL OK (LIM) VIA $DIAL(?J)

ELSE SENDL NOK VIA $DIAL(?J);
END;

ONF TELLER.MOD (CUSTID, NEWLIM) THEN DO.. .END;
END;

ENDMOD;

In this example the user checks the credit of a customer whose account
number is CUSTID. This is done by sending message class CHK with argument
CUSTID to object CREDIT. Notice that a SENDF statement is used, since the
referenced message class is defined by CREDIT. The VIA part is used to
identify the ongoing dialog by means of the current value of I+1.

The receive statement (in object CREDIT) accepts the message by the first
ON statement, and its identifier is assigned to ?J. Then it looks for
message class CHK. When it is found, the required credit check is per-
formed, and the result is sent back to the caller. The $DIAL(?J) function
in the VIA part provides the identifier of the dialog of which message ?J
is part. Notice that in this case the message classes OK and NOK are
defined locally to the object CREDIT, therefore a SENDL statement is used.

In order to enable this "conversation" to continue, RCV statements have to
appear in the code of the sender, following the SENDF statement (but not
necessarily immediately after it). These receive statements have to con-
tain ONF statements to accept the results sent by the above described
SENDL statements inside CREDIT.

2.

REQ CREDIT.CHK (CUSTID);
ON OK (LIM) THEN GOTO CHKLIM;
ON NOK THEN GOTO REFUSE;
END;

Here the same credit check as in the above given example is performed,
however in this case the user is oblivious to the kind of communication
taking place (i.e: synchronous or asynchronous). As stated above, the
associated message class has to be foreign (i.e: defined in CREDIT).

26 PL/IDE GRAMMAR C)

3.

RESULT= CREDIT2.CHK (CUSTID ARC);

MOD• CREDIT2 PROCEDURE;

SRCV;
ON CHK (CUSTID) THEN DO;
IF LIM (CUSTID) CT 0 THEN RETURN (LIM)
ELSE RETURN (0) REENTRY X;
END;

ON MOD (CUSTID, NEWLIM) THEN DO; ... ;END;
END;
X:SRCV;

ENDMOD;

This is the first example rewritten for synchronous communication. Of
special interest are the usage of the RETURN statement (instead of the
SEND statement in asynchronous communication) and the call to function CHK
in object CREDIT2. The latter is actually an abbreviated REQUEST, in which
CHK returns one value only (see explanation on shorthand requests and inv-
ocations, below). As stated above, the reentry part stipulates that next
time module CREDIT2 will be called, execution will start at the statement
labelled X.

a

PL/IDE also features abbreviated forms of requests and invocations, which
are used when the expected response can be of one message class only. The
following examples illustrate these options:

1. STACK.POP(//ELEMENT)
2. STACK.POP
3. COS%METHOD3(X//COSX)
4. PRINT(X)

The first example calls the object POP for an instance of the object
STACK. The returned value is to be assigned to ELEMENT. In the second
example the same call is made, but in functional reference form (i.e: the
first example is a statement, whereas the second example is an expression
whose value is the returned argument).

The third example is a shorthand invocation. It creates an instance of
object definition COS, and sends argument X to entry point (message class)
METHOD3. The returned value appears in COSX. As stated above after return-
ing the result, the instance of COS%METHOD3 is destroyed. The last exam-
ple is also an invocation. The entry specifier is not required, since
PRINT has only one entry. If PRINT returns a result, the form represents
a functional reference.

0 communication statements 27

18 <STMT LIST> :._ <STATEMENT>
19 <STMT LIST> ; <STATEMENT>
20 <STATEMENT> :._ <UNLABELLED BASIC STMT>
21 <IDENTIFIER> : <STATEMENT>
22 <UNLABELLED BASIC STMT> :._ <BALANCED STMT>
23 <UNBALANCED STMT>
24 <BALANCED STMT> :._ <ASSIGNMENT STMT>

<ASSIGN STMT>
25 <DO STMT>
26 <FOR STMT>
27 <WHILE UNTIL STMT>
28 <CASE STMT>
29 <GOTO STMT>
30 <RETRY STMT>
31 <EXIT STMT>
32 <NEXT STMT>
33 <RETURN STMT>
34 <SEND STMT>
35 <ASYNC RCV STMT>
36 <SYNC RCV STMT>

<ERCV STMT>
37 <REQUEST STMT>
38 <INVOKE STMT>

<CANCEL STMT>
39 <REFERENCE>
40 <REFID> <SHORT ARGS>
41 IF <EXPRESSION> THEN <BALANCED STMT> ELSE <BALANCED STMT>
42 <UNBALANCE➢ STMT> :.= IF <EXPRESSION> THEN <UNLABELLED BASIC STilT>
43 IF <EXPRESSION> THEN <BALANCED STMT> ELSE <UNBALANCED STMT>
44 <ASSIGNMENT STMT> ::_ <TARGET LIST> <ASSIGNMENT OP> <COMPOUND EXP>
56 <ASSIGN STMT> :.= ASSIGN <ARG EXPRESSION>
45 <TARGET LIST> :._ <TARGET ELEMENT>
46 I <TARGET LIST> , <TARGET ELEMENT>
47 <TARGET ELEMENT> :._ <REFERENCE>
48 I <EXTRACTOR>

<OBJECT ID>
<DOT> <LEFT AGG BR> <RIGHT AGG BR>
<IDENTIFIER> <DOT> <LEFT AGG BR> <RIGHT AGG BR>

49 <COMPOUND EXP> :._ <ARG EXPRESSION>
50 <COMPOSITE EXP>
50 <COMPOSITE EXP> :._ <QUESTION MARK> ; <STMT LIST> ; END
51 <DO STMT> :._ <TRANS> DO ; <STMT LIST> ; <END STMT>
52 <FOR STMT> :.= <TRANS> FOR <QUERY> <FOR CONT> ;

<STMT LIST> ; <END STMT>
53 <FOR CONT> :._ <BY CLAUSE> <WHILE CLAUSE>
54 J <WHILE CLAUSE>
55 <BY CLAUSE> :.= BY <EXPRESSION>
56 I <BY CLAUSE> BY <EXPRESSION>
57 <WHILE CLAUSE> :.= WHILE <EXPRESSION>
58
59 <WHILE STMT> :._ <WHILEUNTIL> <EXPRESSION> ; <STMT LIST> ;

<END STMT>
<WHILEUNTIL> ::= WHILE

U

U

30 PL/IDE GRAMMAR U

UNTIL
60 <CASE STMT> :.= CASE <CONDITION LIST> ; <OF LIST> ; <END STMT>
61 CASE <CONDITION LIST> ; <OF LIST> ;

<OTHERWISE CLAUSE> ; <END STMT>
62 <CONDITION LIST> :._ <EXPRESSION>
63 <CONDITION LIST> , <EXPRESSION>
64 <OF LIST> :._ <OF CLAUSE>
65 J <OF LIST> ; <OF CLAUSE>
66 <OF CLAUSE> :.= OF <COMPARISON LIST> THEN <UNLABELLED BASIC STMT>
67 <COMPARISON LIST> :._ <COMPARISON ELEMENT>
68 I <COMPARISON LIST> , <COMPARISON ELEMENT>
69 <COMPARISON ELEMENT> :._ <DONT CARE>
70 <RELOP> <EXPRESSION>
71 <SET RELOP> <EXPRESSION>
72 <OTHERWISE CLAUSE> :.= OTHERWISE <UNLABELLED BASIC STMT>
73 <RETRY STMT> :.= RETRY <OPTIONAL LBL>
74 <EXIT STMT> :.= EXIT <OPTIONAL LBL>
75 <NEXT STMT> :.= NEXT <OPTIONAL LBL>
76 <GOTO STMT> :.= GO TO <IDENTIFIER>
77 GOTO <IDENTIFIER>
78 <END STMT> :.= END <OPTIONAL LBL>
79 <OPTIONAL LBL> :._ <IDENTIFIER>
80
124 <TRANS> :.= TRANS <RESERVE PART>
125 I TRANS ONFAIL <IDENTIFIER> <RESERVE PART>

<RESERVE PART> :._
RESERVE (<IDENTIFIER LIST>)

<IDENTIFIER LIST> :._ <IDENTIFIER>
<IDENTIFIER LIST> , <IDENTIFIER>

126 <CANCEL STMT> :.= CANCEL <IDENTIFIER>
127 I CANCEL <IDENTIFIER> <GOTO STMT>

The <ASSIGNMENT STMT> contains the following parts:

• Target list - consists of one or more target elements separated by
commas. A legal target element may be one of the following:

— a <REFERENCE> - which represents a literal function,
— an aggregate extractor - see explanation on EXTRACTORS above,
— an <OBJECT ID> - which represents the object itself (as opposed to

a pointer to the object),
— an empty aggregate (.[]) - which represents all the local data, or
— an identifier followed by an empty aggregate (idl.[]) - which

represents the data local to the object referenced by the identi-
fier.

• Assignment operator - which may be one of the following:

— Simple assignment (=) - substitutes the contents of the left
hand side with the result of the evaluation of the right hand
side. This operator can be used with aggregate expressions, sets,
tuples and, of course, scalars.

control statements 31

Additive assignment (.+_) - this operation us valid for sets and
aggregate expressions. For sets, it performs a union operation
between the tuples resulting from the evaluation in the right hand
side and the set specified in the left hand side (provided their
types and dimensions match). Whereas for aggregates, this opera-
tion is repeated for all the sets in the aggregate on the left
hand side, whose names match those of all the sets on the right
hand side (see explanation of UNION in "usage of aggregate
expressions", above).
Substractive assignment (-=) - this operation is similar to the
additive assignment, however in this case the evaluated tuples
are deleted from the corresponding sets. If a tuple to be deleted
does not exist in the set on the left hand side, the tuple is
ignored. For aggregates, see explanation of MINUS in "usage of
aggregate expressions".

Compound expression - this may be any expression which is also a legal
argument, or it may be a <COMPOSITE EXP>. This is a list of state-
ments preceded by a question mark, and followed by "END". A composite
expression is generally used when a variable is to receive different
values, depending on the result of several conditional statements.
Thus, in order to improve readability of the program, this variable is
placed on the left hand side of an assignment statement, whose right
hand side contains a composite expression. A value is assigned to the
target variable by means of ASSIGN statements. The following example
illustrates this point:

X= ?;
IF A=B THEN ASSIGN (5)
ELSE IF A<B THEN ASSIGN (8)

ELSE ASSIGN (B);
END;

Notice that although the ASSIGN statements are considered <BALANCED
STATEMENT>s, their usage is restricted to composite expressions.

FOR statements perform the statements in their statement list for each
element in the set resulting from the calculation of the <QUERY> (see SETS
and TUPLES above). The QUERY is restricted by optional WHILE and BY claus-
es. The WHILE clause has -the same meaning as in other programming lan-
guages and requires no explanation. The BY clause specifies one or more
attributes according to which the elements in the set are to be ordered
(before performing the iteration). The first attribute in the BY clause is
the dominant sorting factor, then all the elements with equal values for
the first attribute are sorted BY the second attribute, etc...

The CASE statement is best viewed as a series of IF statements, in which
the common left hand side of corresponding comparisons has been "fac-
tored out" and presented in the line preceding the first IF statement. The
following example demonstrates this feature:

Q

32 PL/IDE GRAMMAR

CASE X ,
OF EQ 5, CTNS B THEN DO; ... ; END
OF GT 5, THEN Y= X + Z
OTHERWISE OBJI.FUN2 (X,Y // B,C)
END;

This example is equivalent to the following sequence of statements:

IF X EQ 5 AND F(Y) CTNS B THEN DO; ... ; END
ELSE IF X GT 5 THEN Y= X + Z

ELSE OBJI.FUN2 (X,Y // B,C)

Notice the use of the asterisk (*) where the value of the corresponding
left hand side is of no consequence. In order to improve readability, the
CASE statement uses OF and OTHERWISE instead of the keywords IF and ELSE
respectively.

The <RETRY STNT> may be used only inside a CASE statement. When not
accompanied by a label, control has to return to the beginning of the
innermost CASE statement enclosing the RETRY statement. Otherwise, con-
trol has to return to the beginning of the enclosing CASE statement iden-
tified by this label.

The <EXIT STNT> may be used inside CASE, FOR, DO and RCV statements. When
not accompanied by a label, control is transferred to the first statement
after the compound statement. Otherwise, control is transferred to the
first statement following the enclosing compound statement identified by
this label.

The <NEXT STNT> may be used only inside FOR statements. When not accompa-
nied by a label, it signals that the next iteration in the innermost
enclosing FOR statement, is to be performed. Otherwise, the next iter-
ation in the enclosing FOR statement identified by this label is executed.

The DO, GOTO, IF-THEN-ELSE and END statements are standard .and require no
explanation.

The <TRANS> part, which optionally prefixes the REQ, DO and FOR
statements, is used to identify those statements as transactions. The
format of the TRANS part is as follows:

TRANS ONFAIL label RESERVE (idl,id2,...)

Where the ONFAIL part and the RESERVE part are optional. When TRANS is
prefixed to a FOR statement, each iteration is a separate transaction. The
ONFAIL part specifies the block of statements to which control is trans-
ferred when the transaction fails. If it is absent, enclosing transactions
are backed out until either an ONFAIL clause is found or the enclosing
process is destroyed. If the ONFAIL part is present, control is trans-
ferred to the specified label. If the target block is not at the same
transaction level as the statements containing the ONFAIL clause, the exe-
cuting program has to back out to the lowest common transaction level of
the source and the target transaction.

0 control statements 33

The RESERVE part acts as. a lock on the objects specified in the adjoining
list. The reserved objects can not be accessed by another transaction

until they are released by the current transaction (this happens when the
transaction is terminated). Objects are usually reserved in order to write.
on their data. If an object'is not reserved, the transaction can only
access it•on a READ-ONLY basis.

The <CANCEL STMT> has the following format:

CANCEL labell GOTO label2

Where the GOTO part is optional. It causes the cancellation of the trans-
action which starts at labell. If the GOTO part is present, control is
transferred to label2, thus overriding any prior directive (given either
by default or by the ONFAIL part of the TRANS clause at the beginning of
the transaction).

0

34 PL/IDE GRAMMAR U

1
2
3
4

MODULES

<PROGRAM> :._ <MO➢ULE> ;
<MODULE> :.= MOD <IDENTIFIER> <PROC> ; <PROC CONT>

J MOD <IDENTIFIER> ONLINE ; <MOD CONT>
MOD <IDENTIFIER> <IDENTIFIER> TO <BASIC FORM> ;

<MOD CONT>
5 <PROC> ::= PROCEDURE
6 PROCESS
7 <BASIC FORM> :._ <PROC>

8
ONLINE

<PROC CONT> :._ <INIT ELK> <STMT LIST> ; ENDMOD

9
<DCL BLK> ; <INIT BLK> <STMT LIST> ; ENDMOD
<INIT BLK> <MOD LIST> ; <STMT LIST> ; ENDMOD

10 <DCL BLK> ; <INIT BLK> <MOD LIST> ; <STMT LIST> ; ENDMOD
11 <INIT BLK> <STMT LIST> ; <MOD LIST> ; ENDMOD
12 <DCL BLK> ; <INIT BLK> <STMT LIST> ; <MOD LIST> ; ENDMOD
13 <INIT ELK> <MOD LIST> ; <STMT LIST> ; <MOD LIST> ; ENDMOD
14 <DCL BLK> ; <INIT BLK> <MOD LIST> ; <STMT LIST> ;

15
<MOD LIST> ;

<MOD CONT> :._ <DCL BLK> ; <MOD LIST> ; ENDMOD
ENDMOD

16 I <DCL BLK> ; ENDMOD

17

<MOD LIST> ; ENDMOD
ENDMOD

<DCL BLK> :.= DCL ; <BASICAGG> ; ENDDCL
18 <INIT BLK> INIT ; <STMT LIST> ; ENDINIT ;
17
18 <MOD LIST> :._ <MODULE>
19 I <MOD LIST> ; <MODULE>

A program in PL/IDE is a module, which may contain other modules. There
are three basic system defined modules: PROCESS, PROCEDURE and ONLINE. The
language also provides the user with the capability to define other kinds
of modules in terms of these basic modules.

The declaration block, <DCL BLK> of a module has the structure of a basic
aggregate constructor, in which the relation names are keywords that spec-
ify entries, exits, entities, relationships, etc... (A detailed
description of the <DCL BLK> is presented elsewhere).

The initialization block, <INIT BLK>, may appear only in PROCEDURES and
PROCESSes.

A description of the structure of these modules follows. A detailed expla-
nation of their usage is given elsewhere.

PROCESSes and PROCEDURES have the same structure:

modules 35

MOD idl PROCEDURE ;
<DCL BLK> ;
<INIT BLK> ;
<MOD LIST> ;
<STMT LIST> ;
<MOD LIST> ;
ENDMOD ;

Where a module list is consists of one or more "in place" module defi-
nitions, and both module lists are optional.

PROCEDURES are used for synchronous communication, whereas PROCESSes are
used for asynchronous communication. Both may have several entry points,
and the data defined in the <DCL BLK> can not be accessed from outside.

As stated above, other modules may be defined in the language. These mod-
ules are translated into one of the three basic types prior to
compilation. The target module is specified in the TO-part of the module
header.

The language features two kinds of modules, for which it provides a
"translator". These special modules are DATA GROUPS and ABSTRACTIONS.
Both have the following structure:

MOD id2 DATA_GROUP TO PROCESS ;
ABSTRACTION PROCEDURE

<DCL BLK> ;
<MOD LIST> ;
ENDMOD ;

Where the module list and the declaration block are optional for DATA
GROUPS and required for ABSTRACTIONS. DATA GROUPS may also be translated
into PROCESSes, whereas ABSTRACTIONS can only be of procedural type.

DATA GROUP procedures and ABSTRACTIONS are used for synchronous communi-
cation, whereas the DATA GROUP process is used for asynchronous communi-
cation. Like PROCEDURES and PROCESSes, DATA GROUPS and ABSTRACTIONS may
have several entry points, however unlike PROCEDURES and PROCESSes, they
contain no code. In DATA GROUPS the data defined in the <DCL BLK> can be
accessed from outside the module. This can be accomplished by means of an
expression like:

id2.name3 ,

where id2 is the identifier of the module. Whereas for ABSTRACTIONS the
declared data is. local, and thus inaccessible from outside the module.

The user defined modules enable the user to specify new applications. In
order to do this, the user has to supply a partial compiler, that trans-
lates the modules in the new application (consisting only of declarations)
to any of the three basic modules. The following example will illustrate
this concept:

0

36 PL/IDE GRAMMAR

MOD id3 REPORT_ GENERATOR TO PROCEDURE;
DCL;

END;
MOD header;

ENDMOD;
MOD table_of_contents;

ENDMOD;
ENDMOD;

In this example the user provides a compiler for REPORT_GENERATOR. This
compiler translates all the declarations in id3 to a module of type PROCE-
DURE. In this context, user defined modules have to be aware of the imple-
mentation of the declared variables.

The following table summarizes the above explained concepts:

module kind comm access to user code

PROCEDURE sync user defined entries yes

PROCESS async user defined entries yes

DATA GROUP
procedure

sync user defined entries
declared sets

no

DATA GROUP
process

async user defined entries
declared sets

no

ABSTRACTION sync user defined entries no

user defined both ? no

modules 37

