
30

IDE (Integrated Development Environment)

t

N

Paula S. Newman
Los Angeles Scientific Center

April 1983

C

DISCUSSION ORGANIZATION

PROJECT MOTIVATION

• DESIGN OBJECTIVES

DESIGN OVERVIEW (partial)

a

a

RATIONALE OVERVIEW

THE LEVEL AND FRAGMENTATION PROBLEMS OF
IBM DEVELOPMENT ENVIRONMENTS MAKE THEM

DIFFICULT TO LEARN
DIFFICULT TO USE
PONDEROUS

A WELL KNOWN PROBLEM, YET INSUFFICIENT PROGRESS

MANY EFFORTS FOCUS ON

TOOL IMPROVEMENTS
SURFACE UNIFICATION

FOR REAL PROGRESS NEED FUNDAMENTAL WORK
IN ALTERNATIVE SYSTEM STRUCTURES

MANY SMALL AD-TECH PROJECTS

IDE: ONE SUCH PROJECT

4

ONCE AGAIN - THE FRAGMENTATION PROBLEM

a

DEVELOPMENT OF SINGLE APPLICATION OFTEN REQUIRES

PROGRAMMING LANGUAGE

MULTIPLE CONTROL LANGUAGES
(development and productions systems and subsystems)

APPLICATION GENERATOR LANGUAGE

MULTIPLE DATA MANIPULATION LANGUAGES
(for local data, files, data base, dictionary, other repos)

MULTIPLE DATA DEFINITION LANGUAGES
(for local data, files, data base, dict extend, ...)

DATA UTILITY INTERFACES

LINKAGE EDIT SPECIFICATIONS

(+ SPECIFICATION, DESIGN, DEBUGGING, ... LANGUAGES)

0
MOST LANGUAGES

r

HAVE UNIQUE CONCEPTS & SYNTAX

REQUIRE MORE THAN ONE MANUAL

EFFECTS

APPLICATION COST: COST OF SKILLS

APPLICATION EFFECTIVENESS:

DOCUMENTATION COMPLEXITY (Limits Reviewers)
NOT FEASIBLE TO PROTOTYPE

0
5

a

ALTERNATIVES? SOLUTIONS?

a

APPLICATION PRODUCTIVITY TOOLS?
(E.G. generators, skeletons, ...)

REDUCE SOME COST
(manual work, reqd knowledge for some)

BUT SOMEONE MUST UNDERSTAND WHOLE

GENERATORS MISUSED AS SYSTEM COVER
> as complex as general purpose languages

===> don't coexist well with other components

TOOLS ADD COMPLEXITY TO WHOLE

SUPERIMPOSED INTEGRATION?

COMMON REPOSITORY
Yet another data model
Yet another catalog mechanism

COMMON "SCREEN GENERATORS"
Possibly an area where don't want uniformity

> DON'T ADDRESS BASIC PROBLEM -
DISJOINTED, INCONSISTENT ENVIRONMENT STRUCTURE

> AND ADD STILL MORE COMPLEXITY

0
6

WHAT CAN BE DONE?
START BY LOOKING AT SOURCES OF FRAGMENTATION

ASSUMED DP PATTERN

N application components =__>
N sets of component support mechanisms

FACILITY ACCRETIONS

ADDED support mechanisms AND patterns

EARLY BATCH ENVIRONMENTS

APPLICATION = CTL + PGMS + DATA

CTL: DEF(cmds)
PGM: DEF(hll)
DATA: DEF(cmds, dcl)

C
THEN ADDED

BIND (context) ACCESS(implicit)
BIND(linkedit) ACCESS(call)
BIND(dd..) ACCESS (till stmt, i/o stmt)

LANGUAGES TO ISSUE COMMANDS

TIMESHARING

DATA BASE

APPLICATION GENERATORS

DICTIONARIES

REQUIREMENTS AND DESIGN LANGUAGES

DISTRIBUTED PROCESSING

OTHER ASYNCHRONOUS

O
7

PARTIAL RESULT

C
DEFINITION MECHANISMS

FOR PGMS
FOR CMDS
FOR DATA

LINKING MECHANISMS

FOR PROGRAMS
FOR DATA

ACCESSING MECHANISMS

FOR PGMS
FOR CMDS
FOR DATA

PGMMING LANG
CMD LANG, EXEC LANG
DDL's• - ONE PER CATEGORY

(Local data, files,
dictionary extension,
each kind of db.)

LINKEDIT
CATEGORY BASED
(DD cards, PCB's)

CALL, SVC
EXEC, SVC
DML's - ONE PER CATEGORY
UTILITIES

INTEGRITY/RECOVERY MECHANISMS

FOR PGMS ON CONDITIONS
FOR DATA TRANSACTIONS.

DIRECTORY MECHANISMS

LIBRARIES
CATALOG
DICTIONARY
CONTROL BLOCKS

0

0

0

OBSERVATIONS

FRAGMENTATION IS RESULT OF PROGRESS - NO SOLUTION

CAN LIMIT EFFECTS BY PERIODIC INTRODUCTION OF NEW DESIGNS

USE IN

New applications
Major revisions
Prototyping

DESIGN CRITERIA

Coherent subsumption of current accretions

Non fragmenting pattern

High level facilities

TO DEVELOP SUCH DESIGNS NEED STUDY PROJECTS

IDE is one such study

9'

IDE - CURRENT STATUS

STATUS

FOCUS ON -SINGLE USER ENVIRONMENT

CONSIDERABLE SPECIFICATION

VERY LIMITED DEVELOPMENT (formal grammar, some design)

FEATURES

ONE ASSOCIATIVE DATA MODEL FOR ALL DATA
(local, file, database, directory, design specs)

ONE FULL-SCALE VHLL FOR ALL "PROCEDURAL" PURPOSES
directory access, design, implementation, command

SMOOTH INTEGRATION OF DECLARATIVE FORMS
for application generation, database definition

OBJECT-ORIENTED ENVIRONMENT - UNIFORM MECHANISMS FOR
definition, compilation, linking, cataloging, accessing

DIRECTORY AS CENTRAL FOCUS OF APPLICATION DEVELOPMENT
subsumes catalog, dictionary, binding, control

APPLICABILITY

FEASIBILITY DEMONSTRATION

SOURCE OF SEPARABLE IDEAS

WITH (relatively) SMALL DEVELOPMENT EFFORT

PROTOTYPING VEHICLE

SINGLE-USER ENVIRONMENT

WITH MAJOR DEVELOPMENT EFFORT

FULL ENVIRONMENT

10

U

0

FUNCTIONAL OBJECTIVES

ENVIRONMENT WITH

- NON-FRAGMENTING BASIC PATTERN

NECESSARY ACCRETED FACILITIES

WITH their convenient aspects
WITHOUT associated fragmentation

COMMAND LANGUAGE

WITH ad-hoc aspects
WITHOUT HLL/CMD LANGUAGE split

DATABASE

WITH declarative def, query-like access, atomicity
WITHOUT HLL / DDL / DML split
WITHOUT SYSTEM/SUBSYSTEM split

I

I

APPLICATION GENERATION

WITH declarative def
WITHOUT uneasy coexistence with HLL

DICTIONARY

WITH accessibility of information
WITHOUT dictionary/catalog split

REQUIREMENTS AND DESIGN LANGUAGES

WITH function
WITHOUT separate repositories, views of application

ASYNCHRONISM WITHIN/AMONG APPLICATIONS

WITHOUT separate provisions for tasking, distribution, DB

12

SOURCES

0

0

ASSOCIATIVE DATA BASE MODELS (REL, E-R, ..)

Need data base in environment
Models can subsume others

VERY HIGH LEVEL LANGUAGES (SETL)

Raise environment level
Local data associative --> unification with DR

OBJECT-ORIENTED SYSTEMS (SMALLTALK ..

Provide non-fragmented system pattern
Better base for production systems:

distributed applications
control systems

APPLICATION GENERATION

Hi-level spec of generalizable processing

MODULE INTERCONNECTION LANGUAGES

Substitute for low level linkedit,
Link to design levels

"The time appears to be right for the integration of languages,
operating systems, and database research on object models."

Peter Wegner, 1982

13

OBJECT - ORIENTED ENVIRONMENT

BASED ON PROGRAMMING LANGUAGE IDEA OF ABSTRACTION

(Simula, CLU,

PROGRAMMING LANGUAGE ABSTRACTIONS

DEFINED BY MODULE DEFINITION

SPECIFY ONE OR MORE OPERATIONS * IMPLEMENTATION

DEFINITION MAY HAVE MANY INSTANCES

ACCESSED AS NAME.OP

STACK --> STK I , STK2

STKI.PUSHO, STK2.POP

OBJECT-ORIENTED ENVIRONMENT

USES ABSTRACTION AS ORGANIZING PRINCIPLE

CONTAIN ONLY ABSTRACTIONS = OBJECTS

14

DESIGN OBJECTIVES

USE OBJECT ORIENTATION AS A BASE

One application component, one set of support mechanisms

DESIGN:

ABSTRACTION LANGUAGE (approximation)

Associative local data model
Includes asynchronous capabilities
Version for interactive commands

DECLARATIVE DEFINITION FORMS

For data base, application generation
With close ties to procedural form

DICTIONARY/CATALOG FACILITIES

Subsuming current functions
Subsuming MIL function

DATABASE-ORIENTED ATOMICITY FACILITIES

15

DEVELOPMENT OF DESIGN

C
REMOVAL OF HLL DATA ACCESS FRAGMENTATION

LOCAL DATA, FILE, DATA BASE, UTILITY

INCORPORATE RESULTS IN ABSTRACTION LANGUAGE

UNIFY PROGRAM, DATA ACCESS

UNIFY PROCEDURAL DEFINITION
WITH DECLARATIVE DEFINITION (FOR DB, APGEN)

(From here directional)

a

C

OUTLINE SINGLE-USER / SINGLE-THREAD ENVIRONMENT

DIRECTORY = CATALOG + DICT + MIL + DESIGN REPOSITORY

LANGUAGE EXTENSIONS FOR CMDS/EXECS

EXTEND FOR MULTI-THREAD PROCESSING

COHERENT INTER-OBJECT COMMUNICATION (SYNCH, ASYNCH)

COHERENT ERROR-HANDLING & RECOVERY

(From here little done)

EXTEND TO MULTI-USER ENVIRONMENT

EXTENDED NAMING, CATALOGING, DISTRIBUTION,

17

HLL DATA ACCESS FRAGMENTATION

LOCAL REFS + I/O STMTS + DB DML + UTILITIES

TO REMOVE: STEPS

1. MODEL DEVICES AS PROGRAMS (common)

2. USE SINGLE ASSOCIATIVE MODEL FOR FILES AND DATABASES

? ADD DATA MODEL TO LOCAL TYPES, EXTERNAL REF BY NAMEQUAL

3. USE SINGLE ASSOCIATIVE MODEL FOR ALL DATA

Sufficiently expressive for DB

Supports programming structures (VAR, ARRAY)

Accessible in programming language style (NOT "UPDATE")

18

C

a

IDE DATA MODEL

FROM DB (Relational, Functional) + SETL MODELS

A DATA COLLECTION IS A COLLECTION OF SETS.

A SET CAN BE

single-member or multi-member
of scalars or of tuples
constant or variable.

SCALAR SET CONSTRAINTS

"BASE SET" (integer, real, string, objptr, userdefined)
RANGES
ENUMERATIONS

TUPLE SET CONSTRAINTS

SOURCE SETS FOR EACH POSITION (can be tuple sets)
DEPENDENCIES (M-1, M-N, ..) (for degree 2)

CAN ALSO DECLARE SUBSETS.

Tuple position sources
Basis of "Subset" Relationships

19

EXAMPLE - A CAVE ADVENTURE

Initial Screen

YOU ARE STANDING AT THE ENTRANCE TO A SYSTEM OF CAVES.

FIND THE TREASURE & BRING IT BACK TO THE ENTRANCE.

IN MOVING FROM CAVE TO CAVE, YOU WILL MEET OBSTACLES.

TO OVERCOME OBSTACLES USE OBJECTS WHICH YOU WILL FIND.

YOU CAN CARRY 30 POUNDS OF OBJECTS AT A TIME.

TO GO INTO THE CAVES, PRESS ENTER

Typical Screen

YOU ARE IN THE ANTEROOM. THERE ARE EXITS TO THE
NORTH AND WEST. YOU CAN SEE A HATCHET AND A KEY.

WHAT DO YOU WANT TO DO
TELL ME BY SELECTING ONE WORD FROM EACH COLUMN

GO
GET
DROP

x NORTH
SOUTH
EAST x

WEST
SPADE
BOOTS
MAGIC WAND

SORRY, YOU CAN'T GO THAT WAY --- TRY AGAIN

20

DATA FOR CAVE ADVENTURE DESCRIPTION

0
Place Direction Object Obstacle

'Big Cave' 'North' 'Treasure' 'LockedDoor'
'Water Cave' 'East' 'Key' 'Tunnel'

Move (Place, Direction) <'Big Cave', 'North'>, ..

MoveRslt (Move, Place) <<'Big Cave','North'>,'Tunnel'>, ..

MoveObs (Move,Obstacle) <<'Big Cave','North'>,'Size'>, ..

NeedObj (Obstacle, Object) <'Size', 'Shrinking Potion'>, ..

ObjectWt (Object, Integer) <'Treasure', 10>, ..

0
Content (Place, Object) <'Secret Cave', 'Treasure'>, ..

0
21

LOAD CAVE DATA BASE - UTILITY EQUIVALENT

9

Move (Place, Direction)

MoveObs (Move,Obstacle)

Content (Place, Object)

MoveResult (Move, Place)

NeedObj(Obstacle, Object)

ObjWt (Object, Integer)

Cave.[] *_
[Move <'BigCave', 'South'>

[MoveRslt 'Tunnel' MoveObs 'Size'],
<'LastCave', 'North'>

[MoveRslt 'Plateau']

OR

Cave.[] *=
[* Move [MoveResult MoveObs]//

<'BigCave', 'South> ['Tunnel' 'Size'],
<'LastCave', 'North'> ['Plateau'],

*]

22

0

0

NOW EXAMINE, MODIFY GAME DESCRIPTION

C

0

Move (Place, Direction)

MoveObs (Move, Obstacle)

Content (Place, Object)

MoveResult (Move, Place)

NeedObj(Obstacle, Object)

ObjWt (Object, Integer)

Cave. Content

Cave.Content ('Big Cave')

Cave. Content (7, 'Shrinking Potion')

{?o where Cave.ObjWt(?o) gt 10}

{?loc where Cave.Move(?loc) eq Cave.Direction}

Cave. Object -= Cave. Content ('Passage');

Cave.Content ('StepCave') +_ {* 'Wrench', 'Lamp' *};

Cave.ObjWt('Hammer') = 3 * Cave.ObjWt('MagicWand')

For <?pl, ?d, ?p2>
where <<?p1, ?d>, 7p2> in Cave.MoveResult
and <<?p2, Opposite(?d)>, ?pl> notin Cave.MoveResult;
Print ('Error from 'I I ?pl j f' going ' j } ?d); End;

23

WHY THIS MODEL

U
GOOD DB MODEL: EASE OF ACCESS, SEMANTIC CONTENT

IN BASIC RELATIONAL MODEL,
COLUMN NAMES = DOMAINS or ASSOCIATIONS

"person I father I mother"

HERE DOMAINS, ASSOCIATIONS SEPARATE
DEFINITIONS EASIER TO UNDERSTAND

NETWORK FLAVOR ---> GOOD OPERATIONAL SEMANTICS

Add to subset =_> add to superset
Delete from set =_> Delete associations

(RELATIONAL WORK IN THIS DIRECTION

"inclusion dependencies", emphasis on domains,
hierarchic subcollections (Codd, Date, Lone, ..)

CAN MODEL HLL STRUCTURES

HLL VARIABLE: variable, single-mbr, scalar set

X=Y+Z OK

HLL RECORD: Set mbr + some of its associations

HLL ARRAY: Binary Relation between Si and S2

Si - constant tuple set -
cross product of index domains

S2 - domain of array values

A (<I,J>) = 6 OK

24

INCORPORATE RESULTS IN ABSTRACTION-ORIENTED LANGUAGE

0
OBJECTIVES

UNIFY DATA AND PROGRAM REFERENCE

UNIFY PROCEDURAL AND DECLARATIVE (DB, APGEN) DEF

0

0

SUBJECTS:

ABSTRACTION REFERENCE PATTERNS: GENERAL

REFERENCE IMPLICATIONS OF "Cave.ObjWt"

DECLARATIVE AND PROCEDURAL ABSTRACTION DEFS

DEFINITION IMPLICATIONS OF "Cave.ObjWt"

25

ABSTRACTION REFERENCE PATTERNS: GENERAL

0
BASIC REQUEST STRUCTURE

Req object.entry (arg list);
On exitl (arg list) statement;
On exit2 (arg list) statement;

End;

Req Stackl.Pop;
On Empty Do End;
On Ok (Top-Of-Stack) Do; End;
End;

READABLE CODE,
MODIFIED ARGUMENTS EXPLICIT (*)

REMAINING FORMS SHORTHAND

FOR SINGLE NORMAL EXIT ("call")

Object. Entry (entry args//return-args);

FOR SINGLE NORMAL EXIT + SINGLE EXIT ARG ("fn call")

Object.Op (entry args)

FOR CREATE + REQUEST + DESTROY

Object%Op (entry args)

OBJECT CREATION

DIR.LOCAL (Defptr // Objptr)

0
26

REFERENCE IMPLICATIONS OF "Cave.ObjWt"

1. REQUIRE

Temp\= Cave.Objwt
1

Temp ,_' Cave.ObJ%

IMPLIES

'/t
I

('MagicWand')
J~

1 `

- ALLOW ARGS TO ENTRIES

k-f LI

WHICH DO NOT ACCEPT ARCS

- DO REQUEST, APPLY RETURNED TUPLE-SET TO ARGS*

2. REQUIRE

Cave.ObjWt +_ <'TreasureChest';15.0>

Cave.ObJWt ('Hammer')
` I

IMPLIES

} ~
3* Ca`e:ObjWt ('MagicWand~~

1

LEFT-OF-EQUAL REFERENCES ACCEPTED.

F

UNDERSTOOD DIFFERENTLY FROM RIGHT-OF-EQUALS

A.S += expression
A.S -= expression
A.S = expression

A.E$S(expression//);
A. D$S(expression//);
A. R$S(cxp`,exp2//);

THESE CONVENTIONS APPLY TO ALLI REFER

27

ni

a

o oat

LOCAL DATA AND ABSTRACTIONS

EACH MODULE HAS "LOCAL DATA COLLECTION"

VIEW ENTIRE COLLECTION AS ABSTRACTION

Referenced with invisible pointers

IMPLICATION: NEITHER SCALARS NOR SETS ARE OBJECTS

Cannot define generic scalar operations
Other problems

ADVANTAGES

ALLOWS SET CONSTRUCTION (QUERY) FORMS IN LANGUAGE
PROVIDES NETWORK SEMANTICS AS PRIMITIVE

28

a

MODULE DEFINITION: PROCEDURAL AND DECLARATIVE

0
DATA DEFINITION LANGUAGES AND GENERATOR INPUTS CURRENTLY

a) INCONSISTENT WITH PROCEDURE DEFINITIONS

b) INCONSISTENT WITH EACH OTHER

COALESCE USING RELATIONSHIPS

DECLARATIVE INFO : DATA COLLECTION
DATA COLLECTION : AGGREGATE EXPRESSION

PROCEDURAL MODULE DEF DCL MODULE DEF

MODULE name PROCEDURE MODULE name generator

DCL
aggregate expression
(defining entries, local data) (varying schema)....
END

Main program

Nested module definitions

END

DCL MODULE DEF ---> GENERATOR ---> PROC or DCL MODULE DEF

TWO TYPES OF MODULE DEFINITION

- BUT SYNTACTICALLY, PHYSICALLY RELATED

- EASY COMMUNICATION BETWEEN INSTANCES OF BOTH

- EASY CREATION OF SIMPLE, TAILORED GENERATORS

C
29

USE IN CAVE ADVENTURE

Initial Screen

YOU ARE STANDING AT THE ENTRANCE TO A SYSTEM'OF CAVES.

FIND THE TREASURE & BRING IT BACK TO THE ENTRANCE.

IN MOVING FROM CAVE TO CAVE, YOU WILL MEET OBSTACLES.

TO OVERCOME OBSTACLES USE OBJECTS WHICH YOU WILL FIND.

YOU CAN CARRY 30 POUNDS OF OBJECTS AT A TIME.

TO GO INTO THE CAVES, PRESS ENTER

Typical Screen

YOU ARE IN THE ANTEROOM. THERE ARE EXITS TO THE
NORTH AND WEST. YOU CAN SEE A HATCHET AND A KEY.

WHAT DO YOU WANT TO DO
TELL ME BY SELECTING ONE WORD FROM EACH COLUMN

GO
GET
DROP

x NORTH
SOUTH
EAST x

WEST
SPADE
BOOTS
MAGIC WAND

SORRY, YOU CAN'T GO THAT WAY --- TRY AGAIN

30

0

0

STRUCTURE OF ADVENTURE GAME

CAVEDEF Declarative Def of Cave Structure Objects

CAVE Instance of CaveDef

MYSCREEN Declarative Def of Screen Interface Object

ADVENTURE Procedural Def of Game Control

ADVENTURE > CAVE, MYSCREEN

C

O
31

MYSCREENS: DECLARATIVE DEF OF SCREEN INTERFACE MODULE
(Input to hypothetical, non-built- in generator)

Module Myscreens
Dcl;

Screens 'Si' [
'S2' [

GenScreens to Procedure;

CtnsWindows 'W1°],
CtnsWindows 'W2', 'W3', 'W4', 'W5']

Windows 'W1' [Wpos < 1, 1>, <24,80> WClass 'Message'],
'W2' [Wpos < 1, 1>, < 5,80> WClass 'Message'],
'W3' [Wpos <12, 1>, <20,40> WClass 'Menu'],
'W4' [Wpos <12,41>, <20,80> WClass 'Menu'],
'W5' [Wpos <21, 1>, <25,80> WClass 'Message']

End;
Endmod;

COMPILER

PARSES DCL BLOCK
PLACES INFO IN DATAGROUP OBJECT
PASSES TO GENERATOR
ACCEPTS GENERATED MODULE DEFINITION

USE BY

Myscreens%S1 (BgnMsg)
-- requests output of one part screen

Myscreens%S2 (LocMsg, Wordl, Word2, EMsg//TWd1, TWd2)
--- requests output of four part screen

32

CAVEDEF: DECLARATIVE DEF OF DATAGROUP

Module CaveDef Datagroup To Procedure;

Dcl;`
Var 'BgnMsg' [Base 'String']
Set {* 'Place', 'Direction', 'Object',

'Obstacle', 'Wordy, 'Wordy' *}
[Base 'String']

Rel 'Move' [Roles <* 'Place', 'Direction' *>],
'Content' [Roles <* 'Place', 'Object' *>]

ARel 'MoveRslt' [Roles <* 'Move', 'Place'*>],
'MoveObs' [Roles <* 'Move', 'Obstacle'*>],
'NeedObj' [Roles <* 'Obstacle', 'Object'*>],
'ObjtWt' [Roles <* 'Object', 'Integer' *>]

End; y

EndMod;

DECLARATION SCHEMA SAME AS FOR LOCAL DATA

GENERATED ENTRIES: Place, E$Place, D$Place, R$Place

ALSO DERIVED DATA

33

DECLARATIVE DEFINITION: DATAGROUP FORM
DERIVED DATA BY USER DEFINED ENTRIES

Module CaveDef Datagroup

Dcl;
Entry

'ObjKg' [Returns 'KgRtn' [Args <* 'ObjWt' *>]],
'R$ObjKg' [Args <* 'ObjWt', 'ObjWt'*>]

Var 'BgnMsg' [Base 'String']
Set {* 'Place', 'Direction', 'Object',

'Obstacle', 'Wordy, 'Wordy' *)
[Base 'String']

Rel 'Move' [Roles <* 'Place', 'Direction' *>],
'Content' [Roles <* 'Place', 'Object' *>]

AReI 'MoveRslt' [Roles <* 'Move', 'Place'*>],
'MoveObs' [Roles <* 'Move', 'Obstacle'*>],
'NeedObj' [Roles <* 'Obstacle', 'Object'*>],
'ObjWt' [Roles <* 'Object', 'Real' *>]

End;

Module ObjKg Internal;
Ercv;
Return ({<?o, ?w> where ?w = Cvt(ObjWt(?o))));
EndMod;

Module R$ObjKg Internal;

EndMod;

Cave.ObjKg ('Hammer') = 3 * Cave.ObjKg ('MagicWand');

INTERCHANGE STORED, DERIVED VALUES
WITH NO EFFECT ON ACCESSING PROGRAMS

34

ADVENTURE CONTROL

a
Module Adventure Procedure;

Dcl;

Set {* 'Object', 'Place' *} [Vase . String']
Rel 'Carries' [Roles<<*;Object', tool' *>],

'Content' [Roles <* 'Place', 'Object' *>j 1
'Tmove' [Roles <* 'Place', 'String' *>

Const 'Game' [Base 'ObjPtr' PtrDef 'CaveDef']
Var TWt' [Base 'Integer'],

_ * 'TPlace', 'Tneed', 'TObs', 'Trslt',—'TWd'l', 'TWd2', 'EMsg'

[Base String] iY r1t T 7 '-4 f

Ercv (); 5 7
Myscreens%S1 (Game. BgnMsg); T /-n
TPlace = 'AnteRoom'; TWt = 0;
Content = Game.Content;
EMsg = ";
While True;

Myscreens%S2(LocMsg, Game .Wordl,Game.Word2,EMsg//TWd1,TWd2);
Case TWd1, TWd2;
Of < eq 'Go', in Game.Direction >

Do; Tmove = <TPlace, TWd2>;
Tobs= Game.MoveObs(Tmove);
Tneed = Game.NeedObj (Tobs);
Trslt = Game.MoveRslt(Tmove);
Case Trslt, Tneed, Carries(Tneed);

Of <eq Null, * , *>
EMsg = 'You can't go in that direction';

Of <neq Null, neq Null, False>
EMsg = ObsMsg (Tobs, Tneed);

Otherwise Do; TPlace = Trslt;
EMsg = "; End;

End;

End;

End;
Of < eq 'Take', in Game.Object>

Otherwise EMsg = 'That doesn't make sense';
End;

End;

Defs of Myscreen, LocMsg, ObsMsg, other

Endmod;

a
35

DEVELOPMENT OF DESIGN

C
REMOVAL OF HLL DATA ACCESS FRAGMENTATION

LOCAL DATA, FILE, DATA BASE, UTILITY

INCORPORATE RESULTS IN ABSTRACTION LANGUAGE

UNIFY PROGRAM, DATA ACCESS

UNIFY PROCEDURAL DEFINITION
WITH DECLARATIVE DEFINITION (FOR DB, APGEN)

(From here sketch only)

OUTLINE SINGLE-USER / SINGLE-THREAD ENVIRONMENT

DIRECTORY = CATALOG + DICT + MIL + DESIGN REPOSITORY

LANGUAGE EXTENSIONS FOR CMDS/EXECS

EXTEND FOR MULTI-THREAD PROCESSING

COHERENT INTER-OBJECT COMMUNICATION (SYNCH, ASYNCH)

COHERENT ERROR-HANDLING & RECOVERY

(From here little done)

EXTEND TO MULTI-USER ENVIRONMENT (little work done here)

EXTENDED NAMING, CATALOGING, DISTRIBUTION,

36

L

O

OUTLINE SINGLE-USER / SINGLE-THREAD ENVIRONMENT

C
OBJECTIVES

DIRECTORY INTEGRATING FUNCTIONS OF

CATALOG, MIL, DICTIONARY/REPOSITORY

ONLINE CMDS & EXEC EQUIVALENTS

BY LANGUAGE EXTENSION

37

y

DIRECTORY: DESIRED FUNCTIONS

CATALOG

OBJECT CREATION AND NAMING

BASIC OBJECT PREPARATION SUPPORT

SEPARATE COMPILATION

BINDING

STRUCTURED APPLICATION DEVELOPMENT SUPPORT (MIL)

SEPARATE INTERFACE / EXTREF SPECIFICATION

PARALLEL COMPONENT DEVELOPMENT

DICTIONARY/REPOSITORY

ACCESSIBLE IMPLEMENTATION LEVEL DEFS

HIGHER-LEVEL DESCRIPTIVE/EXECUTABLE DEFS

GROUPING / VERSIONING OF DESCRIPTIONS

38

DIRECTORY: BASIC CATALOG FUNCTION

READ OPERATIONS - AS FOR DATAGROUP OBJECT

OBJECT names of persistent objects

TYPE (OBJECT, OBJECT) links objects to their defs

CLASS (OBJECT, "procedure" "process" I)

REF (OBJECT, STRING) external refs

BIND (REF, OBJECT) binding of external refs

STATE (OBJECT, string)

DESC (OBJECT, string) arbitrary text*

RELOBJ (OBJECT, OBJECT) related objects*

RELDESC (RELOBJ, string) explains relationships*

UPDATE OPERATIONS - INFORMATION GROUPED INTO "ENTRIES"

SOME UPDATE OPERATIONS

Dir.Entry =__> create directory entry
Dir.Ready =__> create represented object
Dir.Ext =__> create entry and object

39

BASIC OBJECT PREPARATION: LINKAGE REQUIREMENTS

Module Adventure Procedure;

Dcl;

Set {* 'Object', 'Place' *) [Base 'String']
Rel 'Carries' [Roles a 'Object', 'Boot' *>],

'Content' [Roles <* 'Place', 'Object' O],

'Tmove' [Roles <* 'Place', 'String' *>
Const 'Game' [Base 'ObjPtr' PtrDef 'CaveDef']
Var 'TWt' [Base 'Integer'],

{* 'TPlace', 'Tneed', 'TObs', 'Trslt', 'TWdl', 'TWd2', 'EMsg' *1

[Base String]
End;

End;

"Game.Content" = DEREFERENCE LOCAL PTR 'Game'

"Const 'Game' [Base 'ObjPtr' PtrDef 'CaveDef'] = DCL OF 'Game'

- PTRS (usually) "TYPED" BY SYMBOLIC DEF NAME (CaveDef)

- BIND SYMBOLIC DEF NAMES BEFORE COMPILATION

BIND CONSTANT POINTERS BEFORE EXECUTION

40

BASIC OBJECT PREPARATION: PRIMITIVE STEPS

0
1. CREATE SOURCE CODE

Create object of type "text" and load (with editor)

2. PREPARE FOR COMPILATION

Create directory entry for object of type "Def"

Include:
Name of source code object
Binding of Definition References

3. COMPILE (Reference "Def" entry for parameters)

Results:
Represented Object = Datagroup with
interface and extref information

C

C

Hidden object with compiled code

4. CREATE INSTANCE

Create Dir Entry With:
Identification of Def
Binding of remaining extrefs

Create Represented Object

ALLOWS SEPARATE COMPILATION, INTERFACE CHECKING

41

BASIC OBJECT PREPARATION - EXAMPLE

DIRECTORY CONTENT ADDITIONS, BY STEP

Object Type Class State LocSrc DefRef DefBind

1. CaveSrc 'Text' 'Proced' 'Ready'

AdvSrc 'Text' 'Proced' Ready'

2. CaveDef 'Def' 'Proced' 'Ready' 'CaveSrc'

AdvDef 'Def' 'Proced' 'Ready' 'AdvSrc' 'CaveDef' <,'CavDef'>

Ref Bind

3. 'Cave' 'CaveDef' 'Proced' 'Ready'

'AdvCtl' 'AdvDef' 'Proced' 'Ready' 'Game' <,'Cave'>

1. CREATE TEXT OBJECTS

Dir.Ext ('CaveSrc', 'Text'); Edit ('CaveSrc')

Dir.Ext ('AdvSrc', 'Text'); Edit ('AdvSrc')

2. CREATE DEF OBJECTS FOR COMPILER OUTPUT

Dir.Entry ('CaveDef', [Type 'Def' Class 'Proced'
LocSrc 'CaveSrc']])

Dir.Entry ('AdvDef', [Type 'Def' Class 'Proced'
LocSrc 'AdvSrc' DefRef 'CaveDef' [DefBind 'Cavedef']])

Compile ('CaveDef') Compile ('AdvDef')

3. CREATE OBJECTS

Dir.Ext ('Cave', 'CaveDef'// Ptrl)

Dir.Ext ('AdvCtl', [Type 'AdvDef' Class 'Proced'
Ref 'Game' [Bind 'Cave']])

Dir.Ready ('AdvCtl')

42

STRUCTURED APPLICATION PREPARATION

0

a

MIL FACILITIES FOR MORE FORMAL DEVELOPMENT

PARALLEL DEVELOPMENT / COMPILATION OF COMPONENTS
APPLICATION STRUCTURE DESCRIPTION

ADDITIONAL BUILT-IN OBJECT TYPES

INTFDEF: REPRESENTS COMPILED INTERFACE DEFINITION
SPECIFIES INTERFACE SOURCE,
OPTIONAL EXTREFS AND BINDINGS

GROUP: REPRESENTS OBJECT GROUP (e.g. application)
SPECIFIES COMPONENTS AND FUNCTIONS

E.G. SPECIFY ADVENTURE

Dir.Entry ('Adventure',
[Type 'Group'

Desc 'Structure of Cave Adventure'
Ctns 'Advintf' [Fun 'Interface to ctl'],

'AdvDef' [Fun 'Impl of ctl'],
'CaveDef' [Fun 'Cave Schema']]

('Advintf', [Type 'IntfDef' DefSrc 'AdvintfSrc'
IntfRef 'Cave']

('CaveDef', [Type 'Def' Class 'Proced'
LocSrc 'CaveSrc']])

Dir.Entry

Dir.Entry

Compile ('Advintf'); Compile ('CaveDef');

THEN IMPLEMENT

Dir.Entry('AdvDef', [Type 'Def' LocSrc 'AdvSrc' Loclntf 'Advintf'
DefRef 'Game' [DefBind 'Cavedef']])

Compile ('AdvDef')

Dir.Ext ('Cave', 'CaveDef')

Dir.Entry ('AdvCtl',...); Dir.Ready ('AdvCtl');

43

LIFECYCLE SUPPORT - EXAMPLE

BEGIN

CREATE GROUP "CAVEAPP" WITH DESCRIPTION

DESIGN

CREATE OBJECT "CAVEDSNI" ; PSL TYPE SCHEMA (e.g.)

INDEX IN "CAVEAPP", FUNCTION = DESIGN

ALTERNATIVE DESIGN

CREATE OBJECT "CAVEDSN2" ; VERSION OF CAVEDSN1

INDEX IN "CAVEAPP", FUNCTION = DESIGN

PROTOTYPE

CREATE GROUP "CAVEPROT";

INDEX IN "CAVEAPP", FUNCTION = PROTOTYPE

INCLUDE ALL RELATED MODULES.

CAVEAPP [CTNS
CAVEDSNI
CAVEDSN2,
CAVEPROT [CTNS

CAVESRC, .. .

44

C

a

C

PROVIDE FOR INTERACTIVE CMDS, EXECS, OTHER NON-COMPILED

REQUIREMENTS

FOR INTERACTIVE LANGUAGE (COMMANDS, QUERIES)

NO DECLARATIONS (---> UNTYPED LOCAL SETS)
PLACEMENT IN OBJECT FRAMEWORK

FOR 'EXEC' EQUIVALENTS

COMMAND GENERATION
UNTYPED SETS

NON-COMPILED GENERIC FACILITIES

DISPLAY (Ptr) ___>

"DISPLAY" ACCESSES DEF(ptr) FOR SET NAMES

+

APPROACH

ONLINE OBJECTS (Interactive Language)

INTERPRETED OBJECTS (Execs, Other non-compiled)

45

INTERACTIVE LANGUAGE (COMMANDS, QUERIES,

C
ONLINE OBJECT

OBJECT WHOSE MAIN PROGRAM FROM TERMINAL

ONE BUILT-IN - NO DECLARATIONS OR NESTED MODULES

(POSSIBILITY OF OTHERS - ACCESS BY "ENTER"/"LEAVE")

LANGUAGE VARIATIONS

SHOW expression(Query Language)

UNDECLARED LOCAL SETS (.A = .B)

SYMBOL RESOLUTION VARIATIONS

TRANSACTION SPECIFICATION VARIATIONS (further on)

46

EXECS, OTHER NON-COMPILED

C
INTERPRETED OBJECTS

INSTANCES HAVE TEXT OBJECTS AS TYPES

FEWER DECLARATIVE REQUIREMENTS

LANGUAGE VARIATIONS

UNTYPED LOCAL SETS ALLOWED (.A = .B)

UNTYPED POINTERS CAN BE DEREFERENCED

O

0

P = Dir.Ptr('objname') Rcv; On A (P) End;

Q = Dir.Type (P)

= P.(exp referencing Q) (args)

COMMAND GENERATION

EXECUTE string;

EXECOBJ objectname (type TEXT, local or external)

(= DO; statements of referenced object END;)

PROBLEM: REFERENCES FROM COMPILED OBJECTS
(SEMANTICS OF LITERAL FUNCTION REFERENCES)

(PARTIALLY RESOLVED BY REQUIRING
INTERFACE OBJECTS IN SOME CASES)

47

EXTEND FOR ASYNCHRONOUS OPERATION

0
OBJECTIVE - COHERENT SUPPORT FOR VARIOUS INTER-OBJECT RELS

LOCAL ABSTRACTION (as before)

CO-ROUTINE

TASKING

SERIALLY ACCESSIBLE DATA BASE

CONCURRENTLY ACCESSIBLE DATA BASE

OTHER CLIENT / SERVER RELATIONSHIPS

COOPERATIVE ASYNCHRONOUS - SIMULATION

OBJECTIVES: CONSISTENCY IN

COMMUNICATION MECHANISMS (SYNCH/ASYNCH)

ERROR-HANDLING 8 RECOVERY (INTRA/INTER OBJECT)

48

ASYNCHRONOUS EXECUTION: COMMUNICATION

Q P1

C

REQ P3.Rl(args);
ON Xl (args) ...
ON X2 (args) ...
END;

REQ P4.R1 (args)
ON Xl (args)
ON X2 (args)
ON NOTFOUND
END;

P2

SENDR P3.R1 SET Al;

SENDR P4. R1(args) SET A2;

RCV
ONF DefP3,X1 (args)

WHERE $RESP(?i) = Al

ONF DEFP3.X2 (args)
ON NOTFOUND
END;

PROCEDURE P3

SRCV;
ON R1 (args) ...
ON R2 (args)...
END;

RETURN Xl (args) REENTER..

PROCESS P4

RCV ?i
ONR Rl (args) guard DO;

REQ = $REQ(?i);..

END;

RESPOND X2 (args) FOR REQ;

- PROCESS = 'MODULE xxxx PROCESS'

- PROCEDURES "LOCAL" OR "SHARED", PROCESSES SHARED

- SHARED PROCESS MANAGES OWN Q, RESPONDS OUT OF SEQ

- GUARD: PREDICATE IN USER DATA, BUILT-IN LOCAL DATA
Q CONTENT - ORDER, SENDER, MTYPE, REQID,..
SYSTEM VAR - TIME, DATE, ...

- DISTINGUISH REQUEST/RESPONSE PAIRS FROM UNLINKED MSGS

49

ERROR HANDLING AND RECOVERY: LOCAL

Module X Procedure

Lb11: Trans Onfail Lbl3 Do;

Lbl2: Trans Do;

End;

If Then Cancel Lbl1 DueTo 'Weather';
End;

Lbl3; Trans Do;

Case $Backout
Of Eq 'Arith' Then
Of Eq 'PointerRef' Then
Of Eq 'Weather' Then
End;

End;

End;

C
WHEN FAIL

BACKOUT DATA TO STATE AT TRANSACTION BEGIN

CONTROL PASSES TO ONFAIL DESTINATION

BUILT-IN DATA CONTAINS REASON FOR FAILURE

INCLUDES LOCAL OBJECT BACKOUT

> ATOMICITY PROVISIONS IN LANGUAGE
> IMPROVES OPTIMIZATION POTENTIAL

0
50

ERROR HANDLING AND RECOVERY: INTER-OBJECT

C
GOAL PROVIDE VARIOUS LEVELS OF STATE COUPLING. AMONG
OBJECTS

NONE - EACH REQUEST INDEPENDENT (but execution atomic)

"LOCKING" - RESERVE/RELEASE OF SHARED PROCEDURE

IF RESERVING TRANSACTION FAILS WITHIN RESERVE
THEN RESET SHARED, ELSE NO RESET

IF SHARED PROCEDURE FAILS, BACKOUT RESERVER

VARIANT - RESERVE COPY

"DB TRANSACTION" - RESERVE/RELEASE OF SHARED PROCESS

RESERVATION EXTENDS TO EXTERNAL TRANSACTION

ADDED TO TRANSACTION HEADER

RESERVED PROCESS MUST BE"XPROCESS"

ACCEPTS RESPONSIBILITY FOR INTEGRITY

AIDED BY SYSTEM

RESERVE ---> RESERVE MSG WITH TRANS-ID

REFERENCE ---> Q INFO HAS TRANS ID

FAIL OF RESERVER ---> NOTIFY MSG

ACCESSIBLE ONLY BY SYNCH REQUEST?

INTERLOCKS CAUSE RESERVER TRANSACTION BACKOUT (detection??)

51

FUNCTIONAL OBJECTIVES

C
ENVIRONMENT WITH

NON-FRAGMENTING BASIC PATTERN

NECESSARY ACCRETED FACILITIES

WITH their convenient aspects
WITHOUT associated fragmentation

COMMAND LANGUAGE

WITH ad-hoc aspects
WITHOUT HLL/CMD LANGUAGE split

DATABASE

0

WITH declarative def, query-like access, atomicity
WITHOUT HLL / DDL / DML split
WITHOUT SYSTEM/SUBSYSTEM split

APPLICATION GENERATION

WITH declarative def
WITHOUT uneasy coexistence with HLL

DICTIONARY

WITH accessibility of information
WITHOUT dictionary/catalog split

REQUIREMENTS AND DESIGN LANGUAGES

WITH function
WITHOUT separate repositories, views of application

ASYNCHRONISM WITHIN/AMONG APPLICATIONS

WITHOUT separate provisions for tasking, distribution, DB

53

SOURCES

ASSOCIATIVE DATA BASE MODELS (REL, E-R, ..)

Need data base in environment
Models can subsume others

VERY HIGH LEVEL LANGUAGES (SETL)

Raise environment level
Local data associative --> unification with DB

OBJECT-ORIENTED SYSTEMS (SMALLTALK ..

Provide non-fragmented system pattern
Better base than existing for

distributed applications
control systems

APPLICATION GENERATION

Hi-level spec of generalizable processing

MODULE INTERCONNECTION LANGUAGES

Substitute for low level linkedit,
Link to design levels

"The time appears to be right for the integration of languages,
operating systems, and database research on object models."

Peter Wegner, 1982

54

DESIGN OBJECTIVES

USE OBJECT ORIENTATION AS A BASE

One application component, one set of support mechanisms

DESIGN:

ABSTRACTION LANGUAGE (approximation)

Associative local data model
Includes asynchronous capabilities
Version for interactive commands

DECLARATIVE DEFINITION FORMS

For data base, application generation
With close ties to procedural form

DICTIONARY/CATALOG FACILITIES

Subsuming current functions
Subsuming MIL function

DATABASE-ORIENTED ATOMICITY FACILITIES

55

DEVELOPMENT OF DESIGN

O
REMOVAL OF HLL DATA ACCESS FRAGMENTATION

LOCAL DATA, FILE, DATA BASE, UTILITY

INCORPORATE RESULTS IN ABSTRACTION LANGUAGE

UNIFY PROGRAM, DATA ACCESS

UNIFY PROCEDURAL DEFINITION
WITH DECLARATIVE DEFINITION (FOR DB, APGEN)

(From here directional)

OUTLINE SINGLE-USER / SINGLE-THREAD ENVIRONMENT

DIRECTORY = CATALOG + DICT + MIL + DESIGN REPOSITORY

LANGUAGE EXTENSIONS FOR CMDS/EXECS

EXTEND FOR MULTI-THREAD PROCESSING

COHERENT INTER-OBJECT COMMUNICATION (SYNCH, ASYNCH)

COHERENT ERROR-HANDLING & RECOVERY

(From here little work)

EXTEND TO MULTI-USER ENVIRONMENT (little work done here)

EXTENDED NAMING, CATALOGING, DISTRIBUTION,

56

C

O

P^

SOME RELATED WORK

DATA BASE STRUCTURES IN PROGRAMMING LANGUAGES

EAS/E, PLAIN, RIGEL, PASCAL-R, DAPLEX (ADAPLEX)

SINGLE-MODEL LANGUAGES

APL, LISP: with consistent environments; SETL, TAXIS

RESOLVING DATA BASE WITH DATA ABSTRACTION

Leavenworth, Weller:. fundamental
DAPLEX, RIGEL: less rigorous, hidden

OTHER

Consistent, full function PSEs: DOD xAPSEs (Intermetrics)
Integrated commercial DB access packages: NOMAD, FOCUS ...
Procedural/executable specification languages: FST, ...
Programming language extension for display support (cries)

57

8~ POTENTIALLY SEPARABLE ELEMENTS

4

DATA MODEL

More expressive than basic relational
More accessible than E/R, functional

DATA ACCESS LANGUAGE

More powerful than SQL, as user-friendly

DECLARATIVE OBJECT DEFINITION

.~

I

For general application generation
Allow expansible set of simple generators\

For data base definition
Replacement for 'subsystem' approach

'AGGREGATE OPERATIONS' (on data base subsets) ';

Utility Functions within DML
Applications in Engineering & Distributed DB

INTER-OBJEC- TtOMMUNICATION CONCEPTS

Consistent syntax, semantics supporting
message passing, abstraction, co-routine, function call.

55

IDE - CURRENT STATUS

STATUS

FOCUS ON SINGLE USER ENVIRONMENT

CONSIDERABLE SPECIFICATION

VERY LIMITED DEVELOPMENT (formal grammar, some design)

FEATURES

ONE ASSOCIATIVE DATA MODEL FOR ALL DATA
(local, file, database, directory, design specs)

ONE FULL-SCALE VHLL FOR ALL "PROCEDURAL" PURPOSES
directory access, design, implementation, command

SMOOTH INTEGRATION OF DECLARATIVE FORMS
for application generation, database definition

OBJECT-ORIENTED ENVIRONMENT - UNIFORM MECHANISMS FOR
definition, compilation, linking, cataloging, accessing

DIRECTORY AS CENTRAL FOCUS OF APPLICATION DEVELOPMENT
subsumes catalog, dictionary, binding, control

APPLICABILITY

FEASIBILITY DEMONSTRATION

SOURCE OF SEPARABLE IDEAS

WITH (relatively) SMALL DEVELOPMENT EFFORT

PROTOTYPING VEHICLE

SINGLE-USER ENVIRONMENT

WITH MAJOR DEVELOPMENT EFFORT

FULL ENVIRONMENT

59

~_ s

