
WORKING PAPER

April 1981

A Survey of Query Optimization Techniques

Farhad Arbab

IBM CORPORATION
LOS ANGELES SCIENTIFIC CENTER

9045 Lincoln Boulevard
Los Angeles, California 90045

CONTENTS

1.0 INTRODUCTION 1
1.1 Programming Languages vs. Query Languages 2
1.2 Domains of Optimization 3

2.0 SYNTACTIC APPROACHES 5
3.0 SEMANTIC APPROACHES 7
4.0 ACCESS PATH APPROACHES 10
5.0 MODELING OF PHYSICAL ORGANIZATION 12
6.0 SURVEY OF LITERATURE ON QUERY OPTIMIZATION,. 15
6.1 Aho, 1978 T 15
6.2 Chandra, 1977 / 16
6.3 Clausen, 1980 17
6.4 Hall, 1976 18
6.5 Hanani, 1977 20
6.6 Palermo, 1972 21
6.7 Pecherer, 1976 22
6.8 Rothnie, 1974 23
6.9 Sagiv, 1978 23
6.10 Smith, 1975 24
6.11 Stroet, 1979 24
6.12 Yao, 1979 25

1.0 INTRODUCTION

~i

Language optimization is at least as old a problem as programming
languages. However, with the advent of query languages it seems like
interest is mounting on this classic subject. This paper presents a survey
of the literature on the topic of query optimization, more specifically,
query optimization in local data base systems. Discussion of query
processing in distributed data base systems is eliminated, because in
these systems the nature of the optimization problem is substantially
different than in case of a local data base. In distributed systems, query
optimization involves system parameters such is extent, availablity, and
costs of information and resources at each site, network topology,
communication costs, and shipping strategies; issues which fall in an

entirely different class than the ones we intend to cover in this paper.
As a pointer to a recent work on this subject, the reader is refered to
[KER80], where the authors study the problem of query optimization under a
specific topology (star) for distributed data base systems, first for a
central-local two computer network, and then generalize their results to

the full star network topology.

In order to be able to put different methods and view points of a rather

diverging group of authors and researchers into perspective, it is

essential to develop a broad common framework. We will begin by a brief

comparison of query and programming languages, in order to highlight the

differences which we blieve are significant enough to change the nature of

a classic problem in the light of a new application. It should be
understood that the intention of this comparison is not to run judgement

on any particular programming or query language, nor to debate suitability

or superiority of any class of languages for the general task of
programming and information processing. The fact that languages of such a

broad and varied spectrum as covering Fortran and CLU are lumped together
into the same class, should not mean that we intend to imply that the

attributes of the class apply equally to its members; and the same, of
course, holds with respect to the class of query languages.

We will see that the differences between programming and query languages

are significant enough to fuel the variety (and the novelty) of the

methods one finds in the literature on query optimization and set them

apart from classic methods for optimization of programming languages. To

put these varied approaches in perspective, we propose a general

classification of three orthogonal categories for optimization

techniques.

Finally, a brief discussion of the papers on the subject which I think are

significant; representative, or comprehensive is included, together with

references to other related papers.

1.1 PROGRAMMING LANGUAGES VS. QUERY LANGUAGES

Consider a conventional programming language such as Fortran, Algol and
associates, APL, Lisp, Simula, or CLU. Also, consider a typical query
language such as relational algebra, relational calculus, QBE, Sequel, or
Quel. Notice that we are not including the navigational directives of INS
or DBTG in the category of query languages, because by themselves they are
npt complete and must be imbeded within another language to become capable
of expressing a query. This, of course, should not mean that it is not
possible to design a query language based on the hierarchical or the
network model of data.

A programming language has a data model which defines its basic types, and
a set of operators including those which operate on the data model to
produce new types (e.g. the structuring operators), operate on types to
produce new objects of a given type, or operate on the objects of given
types to produce new objects. An important class of this operator
repertoire is that of flow of control operators and functional abstraction
features of the language.

A query language too, has a data model and an operator repertoire. Its
data model is generally simpler than that of an average programming
language (exceptions: Lisp and APL) in that it is more homogeneous, and at
the'same •time, higher level, because generally, such data structures are
not immediately available in a programming language. This is an important
point to notice, since higher level data structures capture and represent
a lot more "information" than lower level ones; more on this issue later.
The operator repertoire of query languages is, likewise, both simpler and
more homogeneous than that of programming languages. With few fixed types,
and no provisions for definition of new data types, there is no need for
corresponging operators. Significantly, also missing are the flow of
control and functional abstraction features. This leaves a more or less
uniform set of operators that manipulate objects of relatively high level
of abstraction.

Both query and programming languages are designed to serve the purpose of
information processing. When information increases in volume and/or
complexity, it becomes unmanageable. Information also has the property
that when butchered into smaller pieces randomly, its overall complexity
increases drastically. Hence the only right way to go about processing
complex and/or large volumes of information is to break it down into
manageable pieces by abstraction, i.e. to cut the mass of information into
smaller pieces in such a way as to decrease the interaction of each piece
with others.

Two important methods of information abstraction are operation
abstraction and data abstraction. Operation abstraction is the effort of
step-wise refinement of the process which data is to go through, and is
achieved by modular system design and structured programming. Data
abstraction is the effort of step-wise refinement of the view of data

which is to be processed, and is achieved by utilization of abstract data
types (to the limit of the capabilities of the language.) In fact,
operation abstraction and data abstraction go hand in hand and very much
affect each other throughout the activity of refinement. This interaction
can be understood better by noting that with operation abstraction in
mind, one sees the world the way one wants to operate on it, whereas, data
abstraction puts one in the position to operate on the world the way one
sees it. The former leads one in building tools to operate, whereas the
latter consists of manipulation and extraction of new views of the world
such that they can be operated on with those tools.

Programming languages are generally well equipped to support operation
abstraction through their flow of control operators, functional
abstraction mechanisms, and/or subprogram and macro capabilities. In one
way or another, these features make the operatoz repertoire of programming
languages augmentable. Relative richness and atomicity of data types
available in a programming language, in contrast with a query language,
combined with extensibility of its data types and operators that
manipulate them, provide for some degree of data abstraction.

Query languages, on the other hand, have a rigid and unaugmentable set of
operators and do not provide operation abstraction featurs. Their data
model is also non-extensible and this limits data abstraction to what can
be represented by the underlying model; nothing more and, even more
significantly, nothing less is directly representable.

1.2 DOMAINS OF OPTIMIZATION

In following sections, we will further elaborate on the simple model of a
language disscussed above, i.e. that a language consists of a data model
and an operator repertoire, and will consider the issue of optimization.
Our aim is to investigate the implications of the differences between the
view points taken by query and programming languages on the way they are
utilized to process information, and consequently, on how each should be
optimized. We recognize three major categories of optimization
techniques:

• Syntactic methods

• Semantic methods

• Access path methods

Traditionally, syntactic methods are the most important and the most
commonly used optimization techniques in the realm of programming
languages. As for database management systems, many use techniques which

are combinations of different methods in order to optimize a query, and

quite often, boundaries between these methods are not made very clear.

-3-

5

The above classification, thus, is mostly intended to serve as a crude
analytical tool in our study of (query) optimization techniques rather
than a categorical classification of actual systems or optimizers.

~4

2.0 SYNTACTIC APPROACHES

A first cut approach to optimization is syntactic manipulation of the
source, i.e, the kind of optimization that one can ideally expect from a
user of a languge to perform, without drastic modification to the
algorithm involved. Users of a language are presented with a certain
integral view of a machine and may (in fact, should) not be aware of
whether the abstract machine they know as the language actually exists, or
its behavior is simulated through (possibly a tandem of) compilation
and/or interpretation processes. Invisibility .of implementation details
below the language surface is an important factor which defines one of the
boarder-lines of syntactic approaches to optimization.

By syntactic optimization we mean achieving optimal utilization of the
(extended) operator repertoire of the language, subject to the
constraints that no drastic changes are made to the algorithm or the data
types used in a program (or query.) Even though it is certainly within
the capabilities of a user of a language to utilize its operators in an
extremely optimal manner, it is often impractical to expect any user to do
so. Users of a language miss and avoid optimal utilization of its operator
repertoire for several well justified reasons, including, convenience,
clearity, locality, and self documentability; therefore, this task is
commonly delegated to a specific processor, usually the language
processor itself.

It is very uncommon for a programming or query language to be directly
supported on a machine. Generally, programs and queries are "compiled"
through a sequence of translation phases into a low level machine language
before they can be executed. Strictly speaking, each phase of compilation
expresses the original query or program in a different (sometimes somewhat
implicit) notation or language, e.g. some reperesentation of a parse tree,
an intermediate language such as that of a hypothetical stack machine, or
assembly and machine language. Every one of these "languages" is
susceptible to its own set of correctness-preserving syntactic
transformation rules in order to enhance utilization of its own operator
repertoire.

There are basically two reasons that make syntactic optimization of
intermediate languages even more important than transformations on the
original source. First, the "users" of such intermediate languages are
programs, rather than human beings, that lack creativity, to say the
least. Second, it is extremely unreasonable to expect the real user to
express his program or query in such a way as to compensate or avoid the
"inoptimalities" that will be introduced by the mechanical substitution
nature of the translation phases, even if the user is aware of the details

involved (which very often he is not and should not be) and it is
theoretically possible (which, again, quite often it is not.)

As a program (or query) gets translated' into a lower level language in
each phase of the compilation process (at least conceptually,) its higher
level (data and operation) abstractions get expanded into more elaborate
detail. This successive translation can obscure some of the suitable cases
for application of optimizing transformations to the.point where either
they can no longer be detected, or it would require- a sophisticated
pattern matching algorithm and some degree of semantic analysis (that in
essence would "uncompile" pieces of the lower level code) to detect them.
This fact shows the importance of distributing the task of optimization
among the phases of compilation, rather than trying to optimize at the
lowest level once, and of course, applies not only to syntactic, but to
any type of optimization.

We classify as syntactic optimization methods, those that involve
transformations whose applicability can be 'determined by a superficial
understanding of a program or query. Deciding which transformation rule
is the most appropriate one at a given stage in a syntactic optimization
process, can in fact be very much involved and complicated. Nevertheless,
the information upon which the decision will be based are such that can be
made available by a simple understanding of the notation or language in
which the query or program is expressed, i.e. it merely involves syntactic
properties of language constructs. Algebraic transformations, parse tree
reordering techniques, and logical inference rules are all examples of
syntactic methods of optimization.

Much work has been done on optimization of programming languages and the
literature on this subject is rich. Most of these classic methods also,
are syntactic and apply equally to query languages as well. It is beyound
the scope of this paper to consider these optimization techniques and
those who are interested are refered to [ALL71] for a systematic review of
many such methods. A more recent paper on this subject, [M0R79], presents
a technique based on a purely boolean approach for global elimination of
partial redundancies and performs in a single algorithm what is normally
done by successive application of several algorithms. The particular
redundancies dealt with in [M0R79] are redundant computations and loop
invariants. The authors observe that for well structured programs, the
cost of their algorithm is very nearly linear with respect to the length
of the program, and is very slightly dependent on its graphical structure.
Because this approach is basically boolean and does not take into account
the shape of the graph on which it is applied, the method of [M0R79] is
language independent and works on both implicit and explicit loops.

3.0 SEMANTIC APPROACHES

Tracking our model of a language into a specific program or query, we
recognize that correspondingly, it consists of a specific view and a
specific sequence of operators. (where sometimes, e.g. in case of
non-procedural languages, no temporal notion is associated with the
"sequence".) In case of a program, the view is the set of abstract data
types and their instances used in that program and in case of a query, for
instance one expressed in relational terms, the view would be .the set of
relations used in the query.

Between the two components, it seems that" the view is the principal
constituent in the sense that it has a somewhat sounder effect on the
algorithm of a program or query; it is possible to make, sometimes rather
significant, changes to the sequence of operators in a query or program,
without any significant changes to its view, whereas a change in view
almost always mandates a change in the sequence of operators. This
suggests that somehow, there is a tighter link between the semantics of a
program or query and its view, than there is between the former and its
sequence of operators.

The above observation is the grounds for the distinction that we make
between syntactic and semantic optimization techniques. Whereas syntactic
optimization is limited by the constraint of making no significant changes
to the view (and therefore the semantics) of a program or query, by
semantic optimization we mean reformations that result in the
re-expression of the intention of a program or query in such a way as to
best utilize the data model of the given language. Notice the distinction
that we make between intention and (formal) semantics; as changes are made
to a program or query, preserving the latter is often a much stronger
constraint (consequently, more limiting, but an easier goal to achieve)
than preserving the former.

The principal problem in preserving the intention is to discover it in the
first place; intention and semantics are not only different concepts, but
also there is often a wide gap separating them. Intention is easier to
trace in case of non-procedural specification-like languages where a
program or query is bound to represent the ultimate result more closely
and more explicitly, than in case of procedural languages where even at
the semantic level, each step of a program or query is still blind to its
own role and contribution towards the ultimate result. Extensibility and
augmentability (of the data model and the operator repertoire) in a
language help to make users' intention tractable through the semantics of
their program or query, by providing them with the means to construct and
use whatever (operation or view) abstractions they feel (is closest to
what) they want. Availability of low level abstractions, particularly in
the form of atomic types and lower level data structures in the data model

of a language, also makes intention more tractable through semantics, by
giving users a choice to use abstractions which directly represent their
desired results, instead of including them.

Recalling our discussion on query vs. programming languages regarding the
issues of extensibility, augmentability, and data model, should make it
clear why we consider semantic optimization as a separate and important
category in case of query languages. For most programming languages the
distinction between syntactic and semantic optimization becomes blured
and somewhat arbitrary because of the closeness between the semantics and
intention of their constructs. Besides, pragmatically, it makes sense to
do very little semantic modification to a program and generally what needs
to be done can be handled by a set of transformations that are only
slightly more involved with the semantics than syntactic transformations
are. t

To reiterate, it is not so vital to understand the intention of a program
in order to do a good overall optimization job on it. One can always trust
that the composer of a program is an intelligent being who is given a
suitable set of tools and even though he may use them in a less than
optimal order and context for convenience, he has a rather good sense of
tool selection and generally will not use wildly improper tools; in
particular, he usually will not generate more information than what he is
going to need. At least, one can argue that the effort is better utilized
if it is invested towards optimization of individual "tools" (i.e.,
abstractions) rather than in questioning and second guessing the wisdom of
their use.

The case of most query languages is different. Here the user has an
unaugmentable set of operators and an unextensible data model which offers
a rather high level data structure as a view. Without operation
abstraction features and with limitted data abstraction capabilities,, the

user does not have the suitable tools to succinctly express (or extract)

the result that he wants. Instead, he often deals with information that
contains the result which he seeks. This, in fact, shows a tradeoff in the
design concept of query languages in order to gain generality,
homogeniety, convenience, and ease of use, all at once. To do a good

optimization job on a query, it is important to trace its user's intention

through its semantics in order to find a better way to re-express it. In
particular, it is important to detect and prevent generation of
unnecessary and excessive information which is the result of application

of non-precision all-purpose tools of the language, i.e. "too general"
operators and a "too general" data model. In its simplest form, this
involves cases like where a set is formed just to take a count of its

members or to check if it is vacuous, or where it is not necessary to

eliminate duplicate members in a set, etc. More involved semantic
optimization would re-express the intention of a query in such a way as to

make it susceptible to other optimization transformations, possibly in

other "languages", in order to take advantage of its inherent properties,

e.g. existance of more efficient data structures, parallelism, and
concurrency.

The recent trend of general-purpose very-high-level languages changes the
above picture to some extent. There are now language processors that do in
fact try to perform semantic transformations on their intermediate
representation in order to utilize more efficient internal data
structures, among which SETL, a set oriented programming language [SCH75]
can serve as an example [SCH79].

Semantic methods of query optimization involve transformations whose
applicability can be determined by the properties of the data model as
they relate to the query. Dependencies and constraints implied by the
axioms of the data model, as well as those implied by the user's and
universal views of the data base can be used in conjunction with the
semantics of the query to make inferences about the intention of the user.
after such analysis, the intention of a query can be rephrased as to
conform better with the above constraints. T

4.0 ACCESS PATH APPROACHES

The single most important distinguishing factor between query and
programming languages is in their basic view of the storage hierarchy.
The difference is in fact in the way that the secondary storage is treated
by the language.

Programming languages clearly differenciate between the main memory and
the secondary storage. The main memory is the center of activity and any
meaningful processing can be done only on information that resides there.
The secondary storage is merely a repository of raw and inactive
information upon which no processing can be performed directly. All
programming languages then, have to provide a number of special purpose
operators, called the I/O operators, for transfer of information between
the two segregated levels o£ storage. Such transfers are thus very
explicit and are regarded as "side effects" of the processing. that is
taking place on the information which is already in the main memory,
rather than being based on the merits of the. information on the secondary
storage. (The second class treatment of secondary storage in programming
languages can also be observed in the concept and structure behind the I/O
operators themselves, which traditionally have shared and inherited a
number of attributes such as rudimentary, low level, ugorderly, ad-hoc,
and/or unbecoming of the language.)

The clear separation of the two storage levels in programming languages,
together with the explicitness of information transfer between them, make
it extremely difficult to attempt to optimize such transfers
(consequently, the program itself) in conjunction with the overall
intention of a program. As a 'result, language processors do not generally
go any further than applying few syntactic transformations in that regard.

Query languages, on the other hand, see the secondary storage as a logical
extention of the main memory and also share the built-in assumption that
data, for the most part, resides on the secondary storage. Consequently,
it is irrelevant for the user of a query language where a piece of
information resides, and there is no need for explicit transfer of
information by the so called I/O operators. The unified view of storage
presented on the surface by query languages, is in sharp contrast with the
view taken by programming languages, and makes it the responsibility of
the languge processor to both optimize and judiciously perform transfers
of information between the two levels.

By access path optimization we mean transformations (usually on the
intermediate representations of the query) or utilization of any other
technique that will result in more efficient retrieval of information
which is directly relevant to the result of the query. Access path
optimization involves extensive knowledge about the data base instance in

-10-

question and its implementation details. Implementation details such as
file and page organizations, availability of keys, indices, and links,
and accessability of each in terms of existance of local copies, should
all be the concern of this class of techniques. Transient properties such
as domain volumes or distribution of the values of a particular field, and
other coincidental properties of the data base instance which are not
inherent in its implementation, can also be taken advantage of by access
path optimization methods. A great deal of optimization efforts of
systems such as System R fall under this category.

An important subclass of access path optimization is optimal
implementation of language operators in order to make retrieval more
efficient. Examples of such techniques are .optimal implementation of
relational algebraic operators, most significantly Joins as in [G0T75],
and the dynamic feedback method of Rothnie in.'[R0T74].

Access path optimization also involves issues common to information
retrieval. Some of the techniques in information retrieval, e.g. the one
in [HAN77], can be readily used to solve a problem common with query
processing, whereas some others, e.g. the one in [AH079] or in [YU78], are
not so directly applicable.

Modeling the organization of the data structures which together comprise a
so called physical database, independently being a subject of
considerable interest by itself, is also of significance from the point of

view of access path optimization. We will consider this issue in the next
section.

-11-

5.0 MODELING OF PHYSICAL ORGANIZATION

Efforts towards modeling of physical organization of data bases date back
to long before evolution of today's powerful, high-level, implementation
independent query languages, which but intensify the significance of
optimization. Generally, these efforts are aimed at capturing the
characteristics of a (class of) data organization schemes into a model in
which the cost of storage and/or the cost of access under the access
method(s) supported by the organization can be formulated. Such a model,
then, can be used to determine how well_ a particular data base
organization fits in with the objectives of a specific system, or how does
a data base organization rank among others covered by the same model in
satisfying a given set of requirements; a valuable insight when one is to
implement or reorganize a data base.

A cursury look at the literature on analysis and modeling of data base

organization shows a variety of papers emphasizing different aspects of

the subject. Some models are based on very "qualitative parameters" and

are meant to provide practical guidelines for selecting a data base

organization by imposing a type of ordering on the commonly used

organizations against a set of more or less subjective and case dependent

parameter values, e.g. [SEV77], where the authors present a chart in

which dominant data base retrieval activity is plotted in the three

dimensional space of quantity of records retrieved, volume of online

update, and speed of response. Others present detailed analysis of a

particular data base organization [CAR75 and KEE74]. Few others propose

simple yet relatively general analytical models with a number. of

"quantitative parameters" providing degrees of freedom which make it

possible for the same model to meaningfully cover a range of common data

base organizations, e.g. [HSI70, SEV75, and YA077].

Even though the choice of a physical data base organization and its

corresponding access methods are important topics in long term planning

for overall optimal performance of a database system, we-are not here

interested in this issue. Our interest is in models that are capable of

expressing intrinsic attributes of a rather wide range of existing

physical data base organizations in a manner which underlines the

tradeoffs and compromises and contrasts explicitly the implicit features

and preassumptions involved in the selection of a particular

organization. For our purpose, using such a model is more preferable over

utilizing a number of models each of which covers a specific data base

organization or a few special cases in more elaborate detail, because a

unified model can provide a framework in which generalized access

algorithms and cost equations can be developed and used as the basis for

generalized access path optimization techniques.

-12-

In [YA077] such a generalized model for physical data base organization is
presented. Yao's model can be better understood when put in perspective
with that of Hsiao and Harary [HSI70] and Severance [SEV75].

Hsiao and Harary present a formal model in which a data base is divided
into a file of records and a directory. Each directory entry corresponds
to a keyword and contains the value of the keyword being indexed, the
total number of records which contain that keyword value, and the number
and head pointers to the sublists of records which contain that keyword
value. As one varies the number of sublists of records, the model will
represent organizations ranging between a multilist (one single sublist
per directory entry) and an inverted file (as many sublists per directory
entry as there are records with a given keyword value.) This model, thus,
is basically a one dimentional model, i.e. the only parameter in the model
is the number of sublists per directory entry, f

Severance observes that the model of Hsiao and Harary cannot describe
organizations with other than strictly list oriented record sequencing
and proposes a two dimensional model in [SEV75]. In this model the
structure of each record may be data direct or data indirect, meaning the
record contains the actual data or the record contains a pointer to the
actual data, respectively. The inter-record connection can similarly be
address sequential or pointer sequential, meaning that the successor

record is physically contiguous or the record contains a pointer to its

successor, respectively. The proportion of data indirect records and the

proportion of pointer sequential records in a data base are the two

parameters of Severance's model which covers organizations like

sequential, list, (a kin o£) indexed sequential, and various inverted list

organizations.

Yao notices that Severance's model can only represent a maximum of one

level of indexing using its notion of data indirection. He also mentions

other shorcomings of the model, including the fact that it cannot

represent various cellular list organizations and the lack of provisions

to express the concept of partitioning a list into sublists [YA077].

Like Hsiao and Harary's, Yao's model also divides a data base into a

directory and a file; however, each is broken into further levels. The

directory consist of at least two levels of attributes and keywords, with

zero or more index levels in between, depending on the particular

organization being modeled. The function of the directory is to decode a

given keyword (an "attribute-name,value pair"); the attribute-name is

decoded (identified) at the attributes level and the value, at the

keywords level. Index levels help this decoding by providing means of

faster identification of the lower level items.

The set of records that contain a keyword is called a k-set. The file

contains the k-sets corresponding to the keywords in the directory; this

is the record level. Because it is sometimes desirable to partition a

k-set into several subsets, each contained in a storage bucket, another

level, called the accession level, is introduced above the record level,

-13-

when required. Corresponding to each k-set, there is an accession list
pointing to the storage buckets which comprise the k-set. A tree
representation of the access paths in the data base makes an access tree.
The access tree has its root at level 0, all attribute names appear at
level 1, followed by index levels, if any, the keywords level, the
accession level, and finally, the records level as leaves of the tree at
level n. Connectivity between the nodes of the access tree may be address
sequential Or pointer sequential, as in Severance's model. The set of
nodes with the same immediate parent is called the filial set. The access
tree levels, the average number of nodes per filial set in each level, and
the proportion of pointer sequential connections at each level are the
parameters of the model which together describe the static structure of a
data base organization. The ratio of the free space distributed in the
sequential blocks (buckets) of the filial sets.at each level in order to
delay an overflow, and a threshold ratio for' each level after which an
overflow would be handled by splitting of the filial set, as opposed to
chaining, are the parameters that define the dynamic structure of the data
base for updates and insertions.

Examples of how several of the most commonly used data base organizations
can be represented are included in [YA077] to show the generality of this
model; they include inverted, multilist, cellular, and indexed sequential
organizations. Generalized access algorithms for search and retrieval in
the directory and the file are presented and generalized equations for the
costs of storage and access time are developed based on the model. It is
shown that Cardenas's cost equations for the inverted data base
organization [CAR75] can be derived from this generalized equations as a
special case.

-14-

6.0 SURVEY OF LITERATURE ON QUERY- OPTIMIZATION

6.1 AHO, 1978

A subset of relational algebra is considered as a query language in
[AH078], which presents a formal study of the issues related to the
optimization of queries expressed in this language. This subset is
restricted to the three relational operators select, project, and natural
join, and expressions in this language are called SPJ-expressions. Even
though select, project, and join are not "relationally complete," SPJ
expressions are powerful enough to cover most of the common queries. In
passing, it should be mentioned that relational completeness as an
indicator of the power of a language is itself the subject of some debate
and. Codd's definition of relational completeness, which is based on his
version of relational calculus [C0D72], has been questioned by many, among
them [BAN78] and [CHA79]. In [CHA79], a class o£ queries called computable
queries, is identified. Focusing on computable queries, the concept of
boundedness, expressiveness, and completeness are defined and these
definitions are compared to those of [C0D72] and BAN78].

At the heart of the problem of optimization, is the issue of equivalence
of two queries. In[AH078 , the authors define two notions, of
equivalence, weak equivalence, which is motivated by and relies on the
universal relation assumption, and strong equivalence, which implies weak
equivalence but is a stronger condition than the latter.

Next, the concept of a tableau, a two dimensional representation of
SPJ-expressions, is defined. Tableaux are very much like a subset of QBE
and are a subclass of the "conjunctive queries" of [CHAN77]. Since
tableaux are another representation of SPJ-expressions, they are not
relationally complete. In fact, even conjunctive queries of [CHAN77] are
not relationally complete [SAG78]. It is shown in [AH078] that the
equivalence and optimization problem of SPJ-expressions can be reduced to
analogous problems for tableaux. The advantage of the tableaux approach,
however, is that it makes it possible to deal with functional dependencies
in a mechanical manner. [AH078] gives algorithms for converting an
SPJ-expression to a tableau, based on either definition of equivalence.
Even thouth the authors state that they do not know of an efficient
algorithm to construct an SPJ-expression, given a tableau in general, they
cite a reference where an efficient algorithm is given that works on a
special subset of tableaux, called simple tableaux. [AH078] gives a formal
definition for simple tableaux and observes that "natural" queries
expressed as SPJ-expressions often have simple tableaux.

-15-

The key idea in the equivalence test of two tableaux is the "containment

mapping", which is a mapping from the rows of one tableau to another.
Containment mapping is also at the heart of tableaux minimization, a

process for elimination of the rows of a tableau whose closure is covered

by other rows. Since the number of rows in a tableau is related to the

number of joins in its corresponding SPJ-expression, minimization
corresponds to elimination of joins, where possible.

In general, minimization and test for equivalence are NP-complete

problems, even in case of tableaux. However, for simple tableaux, [AH078]

shows that there exist solutions for these problems that run in polynomial

time, no longer than the fourth power of the size of the tableaux

involved.

6.2 CHANDRA, 1977
ti

First order queries are formally defined as what roughly corresponds to

first order logic. Conjunctive queries are then defined as a subset of

first order queries where only conjunction (AND) and existential

quantifiers are permitted. Conjunctive queries include a large number of

"natural" queries and many more general first order queries are indeed in

part conjunctive, e.g. a first order query expressed in disjunctive normal

form can be expressed as the union of a number of conjunctive queries.

Conjunctive queries are at the heart of QBE, which then builds on this

core to support more general queries, and they are also a superclass of

the tableaux of [AH078]. Nevertheless, conjunctive queries are not

relationally complete, unless two additional operators, union and

difference, are also incorporated [SAG78].

In [CHA77], the authors show that every conjunctive query has a unique (up

to isomorphism, i.e. renaming) minimal equivalent query which can be

obtained from the original query by "combining variables." This result is

similar to the existance of minimal Finite State Automata, which are

obtained by "combining states." Combining variables, like combining

states in FSA, has the Church-Rosser property, which means that regardless

of the order in which variables are combined, one will eventually get to

the same unique minimal result. Hoever, it is proved in [CHA77] that

unlike the case for Deterministic Finite State Automata, minimization of

conjunctive queries (as well as the problem of their equivalence) is an

NP-complete problem.

-16-

6.3 CLAUSEN, 1980

In [CLA8o] a relational data base system, called TGR, is described which
uses microprogrammed data base primitives for searching. Data base
queries are presented to the system in the form of relational calculus
expressions. The optimization algorithm works on relational calculus
expression"s in conjunctive normal form. The major optimization concept in
[CLA80] is the idea of dynamic feedback optimization which can be
classified as a semantic approach to optimization. The method is adapted
from [R0T74] and can best be explained through an example. The following
example is taken from [CLA80] directly. Consider the two relations R1 and
R2 shown below:

Relation R1

Relation R2

Al A2
3 6
4 5
10 2
15 0

Al A2
2 8
5 7
9 6
8 3

Now, consider a query equivalent to:

get R1.Al:for-all R2(R1.A1>R2.A1&R1.A2<R2.A2)

The above query is executed as follows:

For the tuple <3,6> from R1, relation R2 is scanned to see if the
qualification of the query is satisfied, i.e. for-all
R2(3>R2.A1&6<R2.A2). The qualification is not satisfied because of the
tuple <5,7> of R2. From this we gain the information that if condition
F1=(tl.A1<=Sltl.A2>=7) is true for a tuple tl in R1, then the query's
qualification is bound to fail for tl. This eliminates the need to scan
tuples of R2 for such tuples of R1, entirely. F1 is called an elimination
filter.

Similarly, the fact that the tuple <10,2> of R1 satisfies the query's
qualification, leads to another filter, F2=(tl.A1>=10&tl.A2<=2), called a
true filter. A true filter such as F2, when satisfied for a tuple tl in El,
eliminates the need to scan through R2 and designates tl as satisfying the
qualification of the query, automatically.

-17-

A third possibility for optimization which is only mentioned in [CLA80],
but is implemented in TGR is prevention of duplicate tuple formation. This
method too is based on that of Rothnie's as implemented in DAMAS [R0T74].
Suppose that while scanning the tuples of relation R we encountered a
tuple such as <1,2,3>. Let us assume that the true and'elimination filters
are currently such that this tuple will pass to be incorporated in the
result, and let us further assume that the result is (or uses) the last
two fields of each tuple of R only, e.g. <2,3> in case of the tuple in
question. This means that any other tuple of R whose last two fields are
<2,3> is superfluous and its incorporation in the result will merely yield
duplicate tuples. Thus a third filter, say F3, is constructed for relation
R which eliminates all such tuples, preventing their unnecessary
participation in further operations and saving the corresponding scans of
other relations involved.

The above examples were in fact simple. In practice, there are more
complex queries and queries which deal with multi-variable expressions
(as opposed to the above example where only two variables, i.e., two
relation scans, were• involved.) Because this method does not always
guarantee an optimal, or even more efficient execution, guidelines should
be developed as to where and when to use each of the filters. In TGR (and
DAMAS), they use three options to enable/disable each filter mechanism.
However, the problem of when to set/reset an option is not satisfactorily
solved.

In terms of relational algebra, this approach is similar to combining a
selection with other relational algebraic operations, in particular, with
joins, and being able to modify the selection filter dynamically.
However, the actual building of the filters, or in fact the filter
templates as in [CLA80], requires a global understanding of the whole
query. This kind of information is less explicit when a query is expressed
in terms of a procedural language such as relational algebra, as opposed
to when it is written in a descriptive language such as relational
calculus.

6.4 HALL, 1976

In [HAL76] a single query defined in relational algebra is considered.
The paper advocates that the overhead of optimization should be removed in
case of experienced users who express themselves concisely. However, it is
not at all clear how this objective is met or even addressed in the
proposed method. The method presented in this paper is purely syntactic.
The author considers two types of transformations, namely, reordering of
operators, and recognition of common subexpressions. The author's
criteria for transformations considered in his paper is that "because it
is extremely difficult to estimate cost, it is best to avoid
transformations that depend critically on cost." This criteria can be
better understood considering the limit to which cost can be defined on a

-18-

purely syntactic basis. The four types of transformations presented in
this paper are:

• Combining sequences of selections into a single selection
This is achieved by combining filters of each of the selections in the
sequence into a conjunction. Combining filters has two advantages.
First, it can be cheaper to evaluate the conjunction than to evaluate
the filters one by one; and second, the boolean proposition obtained
after conjunction can be simplified.

• Combining sequences of projections
A sequence of projections can be reduced to a single projection. In
some systems, such as the author's PRTV system, where each projection
implies a sort, this transformation is very important.

• Idempotency and null relations
Any relational operation with null relation as one of its operands is
redundant and can be removed. Further, idempotency laws of relational
algebra permit transformations like replacement of the union of a
relation with itself by the same relation. Similarly, null expression
and idempotency laws of boolean algebra can be utilized as
transformation rules.

In general, idempotency rules, null relation and expression removal,
and common subexpression removal should be done concurrently. A
general common subexpression identification algorithm is presented in
[HA74b]. This algorithm transforms the parse tree into a lattice. In
short, it starts at the bottom of the tree and climbing one level at a
time, removes all common subexpressions, while applying idempotency
laws of relational and boolean algebra, and removing expressions
involving null relations. The method is theoretically sound and is
proved to be correct.. The same algorithm is used in [HAL76] and it is
also the basis for similar algorithms used by other authors.

Moving Selections towards leaves of the tree
For each relational algebra operation there is a distributive law that

can be used to distribute selection over that operation. The paper

gives these distributive laws for all operations and presents an
algorithm for pushing selections down a tree.

In case of join the factor & residue method of [HA74a] is used. The

same technique is used by several others.

Distributing a selection filter over a union does not necessarily

improve performance. If the two relations are disjoint, then we cannot
lose by distribution of selection. If the two relations overlap, then

applying the selection filter twice for the common tuples may well

offset the saving by reduction in cardinality. If there is no

significant reduction in cardinality, then we may lose by

distributing the selection. This is a case where mere syntactic

-19-

information is not sufficient for optimization. Disjointness of the
two relations can be determined through the data base definition.
Determination of cardinalities may involve deeper implementation and
instance dependent information.

In case of distributing a selection over an intersection or a
difference, the the above mentioned worsening due to insignificant
changes in cardinality will be accented.

For joins, particularly as they approach cartesian product,
distribution of selection is always an improvement.

6.5 HANANI, 1977

The method of [HAN77] aims at optimizing evaluation of a boolean
expression represented as an AND/OR tree, and even though it is assumed
that the expression is to be evaluated for the records of a file, it can in
fact be extended to work in case of several files as well. It is very
desirable to have this sort of intelligence either in the data management
system underlying the data base, or at≥a level as close to the data
management level as possible, so that higher levels will not be bothered
with the implementation and instate dependent details involved.

In Hanani's approach, two numbers are associated with every terminal node
I of the tree, a t(I), the time it takes to check whether a given record
has the attribute I, and a p(I), the probability that a given record has
the attribute I. The papaer suggests using the frequency of the records
having attribute I as p(I), and the count of machine instructions
required to decide whether a record has the attribute I as t(I).

Two theorems are then presented which make it possible to associate two
similar numbers, t and p, with every non-terminal (AND or OR) node in the
tree. For a non-terminal node, t and p are the minimum time required to
check whether the subexpression represented by the node evaluates to true
for a given record, and the probability that it evaluates to true,
respectively.

Finally, an evaluation algorithm is presented which based on an ordering
imposed by the t and p values, evaluates the expression in optimal time.

In [LAI79] an extension of Hanani's method is presented which makes it
possible to handle "records" whose fields are not all available at the
same time, i.e. some cost may be involved in retrieval of certain
secondary fields. This clearly also handles the case where a query is
dealing with several records of different files at the same time. Laird's
method is essentially the same as that of Hanani, except that three valued

-20-

logic is used instead of the standard boolean logic. The third value of
undefined is assigned as the value of any relational expression I
involving unavailable attributes. The thorems and the algorithm are then
extended to handle this three valued logic.

In [GUD79] a basic implicit assumption of Hanani's algorithm is discussed
which in practice will lead to non-optimal solutions. The main assumption
under which Hanani's approach will in fact yield optimal results is that
each keyword (attribute) can appear in the query only once. This means
that the query I1&I2II1&I3 is not a valid query in Hanani's method.
Suggestions are made which even though do not remove this restriction
entirely, extend Hanani's algorithm to include most of the practically
interesting cases. The proposed extension breaks the one-to-one
correspondance between attributes and keywords .and while it still expects
each keyword in the query to be unique, it permits different keywords in a
query to have the same attribute. Consequently, a query like
DEGREE=BSC&(AGE<30)IDEGREE=MSC&(AGE<40) will be an acceptable, query under
the extension of [GUD79], whereas in Hanani's original method, it is not.

6.6 PALERMO, 1972

In [C0D72] an algorithm is presented for the reduction of relational
calculus expressions to relational algebra formulae. This reduction
algorithm is in no sense meant to be an efficient or a practical method,
and merely serves to prove the possibility of such conversion and
existence of such an algorithm. Palermo, in [PAL72], takes Codd's
algorithm as a basis and through a number of improvements, yields a more
efficient reduction algorithm. The improvements are simple and
intuitively clear in nature but are introduced and discussed in a
mathematical framework. The end result is an algorithm for reduction of
relational calculus expressions to relational algebra, which unlike that
of Codd's, is practically viable.

One major improvement discussed in [PAL72] is substitution of the
construction of the cartesian product of relations defined for each
variable of the query, by formation of joins and unions. This leads to a
gradual growth of the result, as opposed to gradual trimming of Codd's
cartesian product.

Semi-join, an intermediate object introduced in [PAL72], is a
formalization of the concept of constructing a secondary index on the join
field of a relation. Semi-joins can be utilized to prevent multiple
retrieval of tuples and make it possible to construct an algorithm in
which the order of exploring relations can be determined dynamically.

-21-

6.7 PECHERER, 1976

Searching the product space of large sets is a common problem in all
languages supporting a set like view of data, and often requires the
movement of enormous quantities of data. Of course, explicit search of the
product space is not always required; directories and secondary indexes
can be utilized to reduce references to and the volume of the product
space. However, these techniques do not eliminate the problem.

[PECH76] first considers the product of n relations (sets of tuples) and
presents a method for finding an optimal order to obtain the product
through nested iterations. Since the result (output) is independent of the
order in which the product is formed (the order of the nested loops), the
objective is to find an ordering that reduces the amount of input.
Pecherer proves that the ordering is optimal if and only if the ratio
Vi/(Ni-l) is in non-increasing order for i=1 to n representing the order
of relations; where Ni is the number of tuples in relation i and Vi is the
total volume of relation i in bits.

Next, [PEC76] considers restricted products (products followed by a
selection) and observes that the input data volume is minimized if the
input tuples are filtered as soon as possible. When for all i, the
probability of tuples of relation Ri appearing in the final restricted
product (i.e. the probability of the tuples of relation Ri satisfying the
filtering predicate) are known and are independent of each other, [PEC76]
gives a more general version of the Vi/(Ni-l) ratio whose non-increasing
order yields a guaranteed optimal ordering for the relations.

Last, [PEC76] discusses a slightly improved iteration technique and, once
more, modifies the Vi/(Ni-l) ratio such that its non-increasing order
would reflect the optimal order in which the product can be formed.

The analysis of [PEC76] is based on the assumption of a single processor,
limited memory, and single channel to access the relations.

In his thesis [PEC75], Pecherer deals with efficient retrieval in
relational databases and gives efficient algorithms for four relational
operators, restrict (select), product, project, and division. He also
shows that these operators are sufficient for expressing almost all
relational queries.

A related work is that of Kambayashi who in [KAM79] discusses utilization
of functional and multivalued°dependencies in order to find an efficient
ordering to perform joins. The method of [KAM79] yields the optimal
ordering for joins in a special case.

-22-

6.8 ROTHNIE, 1974

In [ROT74] a relational data base system called DAMAS, developed at MIT,
is discussed. The paper presents a promising approach to query
optimization but only in an implicit form and wrapped in the
architechtural details and implementational idiosyncrasies of DAMAS. The
paper is not intended to be an "optimization paper" and talks about DAMAS
in general. The novel dynamic feedback optimization method of Rothnie is
adapted by Clausen [CLA80] in another relational data base system called
TGR, and is discussed elsewhere in this paper.

6.9 SAGIV, 1978

A generalization of tableaux
proposed. It is noted that
expressions involving the three
conjunctive queries of [CHA77]
relationally complete, unless
difference, are also permitted.

of [AH078], called sets of tableaux, is
neither tableaux, which correspond to
operations select, project, and join, nor
which are a superclass of tableaux, are
two additional operations, union and

The generalization of tableaux in [SAG78] incorporates into sets of
tableaux the union operator and shows that every relational expression
involving the operators select, project, join, and union, can be
represented by a set of tableaux. The theory of tableaux can easily be
extended to sets of tableaux.

Sets of tableaux are further generalized to sets of elementary differences
in order to also include the difference operator to a limited extent; thus
every relational expression involving the five oprators select, project,
join, union, and difference, in which the project operator is not applied
to subexpressions that include the difference operator, can be
represented as a set of elementary differences.

Next, the problem of containment for single tableaux is considered
[AH078], and it is shown to be NP-complete. Because containment is at the
heart of equivalnece test and minimization, it follows that these problems
are also NP-complete for single tableaux, sets of tableaux, and sets of
elementary differences. Yet, polynomial-time algorithms for three special
cases which correspond to some class of practically useful queries are
presented.

Three transformations that can be applied to sets
differences to obtain equivalent forms are introduced in
transformations have the finite Church-Rosser property

of elementary
[SAG78]. These
and employ the

-23-

containment test for single tableaux. Finally, a necessary and sufficient
condition for the equivalence of two sets of elementary differences that
are irreducible under these transformations is proved.

6.10 SMITH, 1975

In [SMI75] the architecture of a smart relational database interface is
presented. A relational algebra interface, called SQIRAL, which follows
this approach is discussed. The type of optimizations performed is mostly
syntactic tree-manipulation like in Hall's, with some semantic and simple
access path methods such as coordinating sort grders, using indexes, and
maintaining locality in page referencing, also being exploited.

The paper presents a good systematic description of query optimization
process regarded as a special purpose programmer who aids the user in
efficient query implementation. The significant concept in this automatic
programming approach is the exploitation of concurrency. Each operator is
viewd as an independent task with a well defined interface. The
concurrency inherent in the query can be taken advantage of if each task
is allowed to begin execution as soon as•:it has a sufficient number of
tuples on which to operate. Some tasks, such as selection, will be able
to work on single tuples; these operator tasks can be pipelined. Others
would require entire relations before they can operate.

Pipelining and paralleling of operations are important optimization
issues even when multiple (real or virtual) processors are not available.
In [BUR76] these isseues are addressed in the context of set oriented
programming languages. In [ARB80] the same issues are discussed utilizing
the approach of [BUR76], with the target of discussion being a very high
level database manipulation language.

6.11 STROET, 1979

In [STR79], Stroet and Engmann present a formal syntax for expressions
based on relational algebra. As a query (a relational algebra expression)
is analyzed, a tree is constructed and the optimization phase consists of
applying tree transformations which will improve the evaluation of the
query. Transformations are very similar to those used by Hall, except that
here, they explicitly deal with trees.

The formal syntax for relational algebraic expressions is included in the
appendix and the paper gives a good formal coverage of tree manipulation
techniques for syntactic optimization of queries.

-24-

6.12 YAO, 1979

In [YA079] the problem of access path optimization is considered. A model
is presented for systematic synthesis (or analysis) of:a large collection
of "two-variable" query access strategies which otherwise would have to be
analyzed separately and individually. It, thus, serves as a general
framework within which different access strategies can be represented,
analyzed, and compared, using a unified approach.

Because Yao`s model deals with simple queries which only refer to one or
two relations, the approach requires an external heuristic procedure for
decomposition of complex queries into simple ones (i.e. semantic
optimization). Once this is done, for each siniple query it is possible to
find the optimal access path using the model. Basically, it is also
possible for the heuristic decomposer to use the model and its cost
factors to reach a better decomposition resulting in a "more optimal"
overall performance for the complex query.

The model recognizes seven basic classes of single relation access
strategies based on the order in which relational algebraic operations
Restrict (select), Project, and Join are applied, whether or not
inter-relation links (one-to-many relationships between fields of two
relations) are used to access tuples, and, finally, when records (tuples)
are actually retrieved. Some classes have variations reflecting minor
reorderings of operator sequences that do not really change the class
properties. For example, RAJ represents class 1 of single relation access
strategies and includes all such strategies which begin with a
restriction (selection), R, followed by access (actual retrieval of a
record), A, and, finally, a join, J. Depending on where a projection
operator, P, is inserted, RAPJ and RAJP represent two other variations of
the same class. Another example is class 7 which includes the two
variants LRA and RLA, where L represents the use of an inter-relation link
traversal method.

Two-relation access strategies are classified by identifying which basic
single-relation access strategy is used for each of the two relations
involved, e.g. RAJ/RAJ. The possible combinations of the seven basic
single query access strategies lead to 31 basic types of two-relation
access algorithms, or 339 if one counts all individual variations of each
class.

In a given data base implementation it may quite well be that not all
seven basic access strategies can be supported by the storage structure,
and this may eliminate many of the theoretically feasible two-relation
access strategies. A summary of storage structure requirements to support
each of the seven basic access classes is presented in [YA079], and based
on the assumption that "cost" is measured by the number of page accesses,

cost equations for each access operator is quoted from [YA78b] which

-25-

contains their detailed derivations. Costs for single and two-relation
access strategies are then computed using these access operator costs.

An obvious application of this cost model is to use it when several access
algorithms are available, in order to choose the most•appropriate one for
a query. This approach will yield the optimum result only if the optimal
access algorithm for the specific query under consideration is available
on that particular data base implementation. Given the rather large
number of possibilities, very often a compromise is made and only few
different access algorithms are implemented, e.g, in System R. This can
severely limit the number of choices, thus, defeating the purpose of a
detailed cost model with fine resolution when the end result is selection
of one of a few coarse and bulky options. For example, even though Yao's
model can be used to evaluate the performance of the System R's optimizer
by cheking how close it gets to the optimum given by the model, one may not
automatically conclude that incorporation of this model in System R for
the purpose of access algorithm selection will be an improvement, unless
many more access strategies are also implemented.

Another application of the model, as briefly discussed in [YA079], is to
use it in conjunction with a synthesizer program which forms an access
algorithm for each simple query out of the well defined access operators,
based on the type of the query and using operator costs as the measure for
optimality. This method will result in the best access algorithm for every
simple query, to the limit of the capabalities of a given storage
structure. Notice, however, that this dynamic access algorithm
synthesizer will not replace the heuristics for decomposition of complex
queries.

-26-

REFERENCES

AH079 Aho A. V. and Ullman J. D.
Optimal Partial-Match Retrieval When Fields
Are Independently Specified
ACM TODS, Vol. 2 No. 4, June 1979

AH078 Aho A. V., Sagiv Y., and Ullman J. D.
Efficient Optimization of a Class of Relational Expressions
SIGMOD 1978, also ACM TODS, Vol. 4 No. 4, December 1979

ALL71 Allen F. E. and Cocke J.
A Catalogue of Optimizing Techniques, 7
In "Design and Optimization of Compilers"
R. Rustine, Editor
Prentice Hall, Englewood Cliffs, NJ, 1971, pp 31-50

AND77 Anderson H. D. and Berra P. B.
Minimum Cost Selection of Secondary Indexes
for Formatted Files
ACM TODS Vol. 2 No. 1, March 1977

ARB80 Arbab F.
Notes on The Semantics and Optimization of a VHLL
IBM LASC Report, G320-2706, October 1980

BAN78 Bancilhon F.
On the Completeness of Query Languages
for Relational Databases
Proc. 7th Symp. on Math.. Found. of Comp. Sci.
Springer-Verlag Lect. Notes in Comp. Sci., September 1978

BAN80 Banerjee J., Hsiao D. K., and Ng F. K.
Database Transformation, Query Translation, and
Performance Analysis of a New Database Computer

in Supporting Hierarchical Database Management

IEEE Trans. on Soft. Eng., Vol. 6 No. 1, January 1980

BEC80 Beck L. L.
A Generalized Implementation Method for
Relational Data Sublanguages
IEEE Trans. on Soft. Eng., Vol. 6 No. 2, March 1980

BLA77 Blasgen M. W. and Eswaran K. P.
Storage and Access in Relational Data Bases
IBM System Journal 1977 No. 4, pp 363-377

BUR76 Burge, W. H.
An Optimizing Technique for High Level Programming Languages

IBM T. J. Watson Research Center, RC 5834, February 1976

CAR73 Cardenas A. F.
Evaluation and Selection of File Organization -

A Model and System
CACM, Vol. 16 No. 9, September 1973, pp 540-548

CAR75 Cardenas A. F.
Analysis and Performance of Inverted
Data Base Structures
CACM, Vol. 18 No. 5, May 1975, pp 253-263

CHA77 Chandra A. K. and Merlin P. M.
Optimal Implementation o£ Conjunctive Queries in
Relational Data Banks
Proc. 9th ACM Symp. on Theory of Computing, May 1977, pp. 77-90

CHA78 Chang C. L.
An Optimization Problem in Relational Databases
IBM San Jose Research Report No. RJ2287, July 1978

CHA79 Chandra A. K. and Harel D.
Computable Queries for Relational Data Bases
Proc. ACM Symp. on Th. of Comp., April-May 1979

CH078 Choy D. M. and Schkolnick M.
Implementation of Unclustered Linksin
Relational Data Base Systems
IBM San Jose Research Report No. RJ2199, March 1978

CLA80 C]ausen S. E.
Optimizing the Evaluation of Calculus
Expressions in a Relational Database System
Info. Systems, Vol. 5 pp 41-54, 1980

C0D72 Codd E. F.
Relational Completeness of Database Sublanguages
In "Database Systems", Rustin R. Editor
Prentice Hall, 1972

DEW79 DeWitt D. J.
Query Execution in DIRECT
Proc. .of SIGMOD 1979 Int. Conf. on Manag. of Data

01L75 Gilles Farley J. H. and Schuster S. A.
Query Execution and Index Selection for
Relational Data Bases
Tech. Rep. CSRG-53, Univ. of Toronto, March 1975

GOT75 Gotlieb L. R.
Computing Joins of Relations
Proc. of SIGMOD 1975

GRI79 Griffiths Selinger P., Astrahan M. M.,
Chamberlin D. D., Lone R. A., and Price T. G.
Access Path Selection in a Relational Database
Management System
Proc. of ACM-SIGMOD 1979 Int. Conf. on Manag. of Data
(also, IBM San Jose Res. Rep. No. RJ2429, January 1979)

GUD79 Gudes E. and Hoffman A.
A note on "An Optimal Evaluation of Boolean
Expressions in an Online Query System"
CACM Vol. 22 No. 10, October 1979

HA74a Hall P. A. V. and Todd S. J. P.
Factorisations of Algebraic Expressions
IBM UKSC Report, UKSC0055, April 1974

HA74b Hall P. A. V.
Common Subexpression Identification in
General Algebraic Systems
IBM UKSC Report, UKSC0060, November 1974

I

HAL76 Hall P. A. V. 'r

Optimization of Single Expressions in a
Relational Data Base System
IBM J. Res. & Dev., May 1976

HAN77 Hanani M. Z.
An Optimal Evaluation of Boolean
Expressions in an Online Query System
CACM Vol. 20 No. 5, May 1977
(see also [LAI79] and [GUD79])

HSI70 Hsiao D. and Harary F.
A Formal System for Information Retrieval from Files
CACM, Vol. 13 No. 2, February 1970, pp 67-73
(Corrigendum, CACM, Vol. 13 No. 4, April 1970, pp 266)

KAM79 Kambayashi Y.
Efficient Procedures for Query
Processing in Relational Databases
Dept. of Info. Science Rep: No. ER79-02
Kyoto University, Japan, January 1979

KAT79 Katz R. H. and Wong E.
An Access Path Model for
Physical Database Design
Memo No. UCB/ERL M80/1, UC Berkeley, December 1979

KEE74 Keehn D. G. and Lacy J. 0.
VSAM Data Set Design Parameters
IBM System J., Vol. 13 No. 3, 1974, pp 186-212

KER80 Kerschberg L., Ting P. D., and Yao S. B.
Query Optimization in Star Computer Networks
Bell Labs. Holmdel Database Res. Rep. #2, March 1980

LAI79 Laird P. D.
Comments on "An Optimal Evaluation of Boolean
Expressions in an Online Query System"
CACM Vol. 22 No. 10, October 1979

MCS78 McSkimin J. R.
READS - A Relational Data Access System for
Real-Time Applications
Proc. IEEE Compsac 78, pp 295-300

M0H78 Mohan C.
Ari Overview of Recent Data Base Research
Tech. Rep. SDBEG-5, April 1978
Dept. of CS, Univ. of Texas at Austin
(also, ACM-SIGBDP's "DATABASE", Fall 1978)

MOR79 Morel E. and Renvoise C.
Global Optimization by Suppression of
Partial Redundancies
CACM Vol. 22 No. 2, February 1979 r

PAL72 Palermo F. P.
A Data Base Search Problem
IBM San Jose Research Report RJ1072, July 1972

PEC75 Pecherer R. M.
Efficient Evaluation of Expressions in a
Relational Algebra
Proc. ACM Pacific Conf., April 1975, pp 44-49

PEC76 Pecherer R. M.
Efficient Exploration of Product Spaces
Proc. ACM-SIGMOD 1976, pp 169-177

ROT74 Rothnie J. B.
An Approach to Implementing a Relational
Data Management System
Proc. ACM-SIGMOD 1974, pp 277-294

SAG78 Sagiv Y. and Yannakakis M.
Equivalence Among Relational Expressions with

the Union and Difference Operations
JACM Vol. 27 No. 4, October 1980
(also: TR-241, Dept. of EECS, Princeton University, 1978)

SCH75 Schwartz J. T.
On Programming
An Interim Report on the SETL Project
Courant Institute of Mathematical Sciences, 1975

SCH78 Schmidt J. W.
On the Implementation of Relations:

A Key to Efficiency
Tech. Rep. CSRG-89, Univ. of Toronto, January 1978

5CH79 Schonberg E., Schwartz J. T., and Sharir M.
Automatic Data Structure Selection in SETL

6th ACM Symp. on Prin. of Prog. Langs., January 1979

k
SET74 Sethi R.

Testing for the Church-Rosser Property
JACM Vol. 21 No. 4, October 1974

SEV75 Severance D. G.
A Parametric Model of Alternative File Structures
Info. Systems, Vol 1 No 2, 1975, pp 51-55

SEV77 Severance D. G. and Carlis J. V.
A Practical Approach to Selecting Record Access Paths
Computing Surveys, Vol. 9 No. 4, December 1977

5M175 Smith J. M. and Chang P. Y. T.
Optimizing the Performance of a Relational
Algebra Database Interface I
CACM, October 1975

STR79 Stroett J. W. M. and Engmann R.
Manipulation of Expressions in a Relational Algebra
Info. Systems, Vol. 4 pp 195-203, 1979

ULL80 Ullman J. D.
Principles of Database Systems
Computer Science Press, 1980

WON76 Wong E. and Youssefi K.
Decomposition- a Strategy for query processing
ACM TODS Vol. 1 No. 3, September 1976

YA78a Yao S. B. and DeJong D.
Evaluation of Database Access Paths
Proc. ACM SIGMOD Int. Conf. Manage. of Data
Austin, Texas, May. 1978, pp. 66-77

YA78b Yao S. B.
Optimization of Query Evaluation Algorithms
Tech. Rep. TR283, Comp. Sci. Dept.
Purdue Univ. W. Lafayette, Ind., August 1978
(A more detailed version of [YAO79])

YAO77 Yao S. B.
An Attribute Based Model for Database
Access Cost Analysis
ACM TODS Vol. 2 No. 1, March 1977

YA079 Yao S. B.
Optimization of Query Evaluation Algorithms
ACM TODS, Vol. 4 No. 2, June 1979

YU78 Yu C. T., Luk W. S.,
On the Estimation of
Records with Respect
ACM TODS, Vol. 3 No.

and Siu M. K.
the Number of Desired
to a Given Query
1, March 1978

