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1.0 INTRODUCTION 

~i 

Language optimization is at least as old a problem as programming 
languages. However, with the advent of query languages it seems like 
interest is mounting on this classic subject. This paper presents a survey 
of the literature on the topic of query optimization, more specifically, 
query optimization in local data base systems. Discussion of query 
processing in distributed data base systems is eliminated, because in 
these systems the nature of the optimization problem is substantially 
different than in case of a local data base. In distributed systems, query 
optimization involves system parameters such is extent, availablity, and 
costs of information and resources at each site, network topology, 
communication costs, and shipping strategies; issues which fall in an 

entirely different class than the ones we intend to cover in this paper. 
As a pointer to a recent work on this subject, the reader is refered to 
[KER80], where the authors study the problem of query optimization under a 
specific topology (star) for distributed data base systems, first for a 
central-local two computer network, and then generalize their results to 

the full star network topology. 

In order to be able to put different methods and view points of a rather 

diverging group of authors and researchers into perspective, it is 

essential to develop a broad common framework. We will begin by a brief 

comparison of query and programming languages, in order to highlight the 

differences which we blieve are significant enough to change the nature of 

a classic problem in the light of a new application. It should be 
understood that the intention of this comparison is not to run judgement 

on any particular programming or query language, nor to debate suitability 

or superiority of any class of languages for the general task of 
programming and information processing. The fact that languages of such a 

broad and varied spectrum as covering Fortran and CLU are lumped together 
into the same class, should not mean that we intend to imply that the 

attributes of the class apply equally to its members; and the same, of 
course, holds with respect to the class of query languages. 

We will see that the differences between programming and query languages 

are significant enough to fuel the variety (and the novelty) of the 

methods one finds in the literature on query optimization and set them 

apart from classic methods for optimization of programming languages. To 

put these varied approaches in perspective, we propose a general 

classification of three orthogonal categories for optimization 

techniques. 

Finally, a brief discussion of the papers on the subject which I think are 

significant; representative, or comprehensive is included, together with 

references to other related papers. 



1.1 PROGRAMMING LANGUAGES VS. QUERY LANGUAGES 

Consider a conventional programming language such as Fortran, Algol and 
associates, APL, Lisp, Simula, or CLU. Also, consider a typical query 
language such as relational algebra, relational calculus, QBE, Sequel, or 
Quel. Notice that we are not including the navigational directives of INS 
or DBTG in the category of query languages, because by themselves they are 
npt complete and must be imbeded within another language to become capable 
of expressing a query. This, of course, should not mean that it is not 
possible to design a query language based on the hierarchical or the 
network model of data. 

A programming language has a data model which defines its basic types, and 
a set of operators including those which operate on the data model to 
produce new types (e.g. the structuring operators), operate on types to 
produce new objects of a given type, or operate on the objects of given 
types to produce new objects. An important class of this operator 
repertoire is that of flow of control operators and functional abstraction 
features of the language. 

A query language too, has a data model and an operator repertoire. Its 
data model is generally simpler than that of an average programming 
language (exceptions: Lisp and APL) in that it is more homogeneous, and at 
the'same •time, higher level, because generally, such data structures are 
not immediately available in a programming language. This is an important 
point to notice, since higher level data structures capture and represent 
a lot more "information" than lower level ones; more on this issue later. 
The operator repertoire of query languages is, likewise, both simpler and 
more homogeneous than that of programming languages. With few fixed types, 
and no provisions for definition of new data types, there is no need for 
corresponging operators. Significantly, also missing are the flow of 
control and functional abstraction features. This leaves a more or less 
uniform set of operators that manipulate objects of relatively high level 
of abstraction. 

Both query and programming languages are designed to serve the purpose of 
information processing. When information increases in volume and/or 
complexity, it becomes unmanageable. Information also has the property 
that when butchered into smaller pieces randomly, its overall complexity 
increases drastically. Hence the only right way to go about processing 
complex and/or large volumes of information is to break it down into 
manageable pieces by abstraction, i.e. to cut the mass of information into 
smaller pieces in such a way as to decrease the interaction of each piece 
with others. 

Two important methods of information abstraction are operation 
abstraction and data abstraction. Operation abstraction is the effort of 
step-wise refinement of the process which data is to go through, and is 
achieved by modular system design and structured programming. Data 
abstraction is the effort of step-wise refinement of the view of data 



which is to be processed, and is achieved by utilization of abstract data 
types (to the limit of the capabilities of the language.) In fact, 
operation abstraction and data abstraction go hand in hand and very much 
affect each other throughout the activity of refinement. This interaction 
can be understood better by noting that with operation abstraction in 
mind, one sees the world the way one wants to operate on it, whereas, data 
abstraction puts one in the position to operate on the world the way one 
sees it. The former leads one in building tools to operate, whereas the 
latter consists of manipulation and extraction of new views of the world 
such that they can be operated on with those tools. 

Programming languages are generally well equipped to support operation 
abstraction through their flow of control operators, functional 
abstraction mechanisms, and/or subprogram and macro capabilities. In one 
way or another, these features make the operatoz repertoire of programming 
languages augmentable. Relative richness and atomicity of data types 
available in a programming language, in contrast with a query language, 
combined with extensibility of its data types and operators that 
manipulate them, provide for some degree of data abstraction. 

Query languages, on the other hand, have a rigid and unaugmentable set of 
operators and do not provide operation abstraction featurs. Their data 
model is also non-extensible and this limits data abstraction to what can 
be represented by the underlying model; nothing more and, even more 
significantly, nothing less is directly representable. 

1.2 DOMAINS OF OPTIMIZATION 

In following sections, we will further elaborate on the simple model of a 
language disscussed above, i.e. that a language consists of a data model 
and an operator repertoire, and will consider the issue of optimization. 
Our aim is to investigate the implications of the differences between the 
view points taken by query and programming languages on the way they are 
utilized to process information, and consequently, on how each should be 
optimized. We recognize three major categories of optimization 
techniques: 

• Syntactic methods 

• Semantic methods 

• Access path methods 

Traditionally, syntactic methods are the most important and the most 
commonly used optimization techniques in the realm of programming 
languages. As for database management systems, many use techniques which 

are combinations of different methods in order to optimize a query, and 

quite often, boundaries between these methods are not made very clear. 
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The above classification, thus, is mostly intended to serve as a crude 
analytical tool in our study of (query) optimization techniques rather 
than a categorical classification of actual systems or optimizers. 

~4 



2.0 SYNTACTIC APPROACHES 

A first cut approach to optimization is syntactic manipulation of the 
source, i.e, the kind of optimization that one can ideally expect from a 
user of a languge to perform, without drastic modification to the 
algorithm involved. Users of a language are presented with a certain 
integral view of a machine and may (in fact, should) not be aware of 
whether the abstract machine they know as the language actually exists, or 
its behavior is simulated through (possibly a tandem of) compilation 
and/or interpretation processes. Invisibility .of implementation details 
below the language surface is an important factor which defines one of the 
boarder-lines of syntactic approaches to optimization. 

By syntactic optimization we mean achieving optimal utilization of the 
(extended) operator repertoire of the language, subject to the 
constraints that no drastic changes are made to the algorithm or the data 
types used in a program (or query.) Even though it is certainly within 
the capabilities of a user of a language to utilize its operators in an 
extremely optimal manner, it is often impractical to expect any user to do 
so. Users of a language miss and avoid optimal utilization of its operator 
repertoire for several well justified reasons, including, convenience, 
clearity, locality, and self documentability; therefore, this task is 
commonly delegated to a specific processor, usually the language 
processor itself. 

It is very uncommon for a programming or query language to be directly 
supported on a machine. Generally, programs and queries are "compiled" 
through a sequence of translation phases into a low level machine language 
before they can be executed. Strictly speaking, each phase of compilation 
expresses the original query or program in a different (sometimes somewhat 
implicit) notation or language, e.g. some reperesentation of a parse tree, 
an intermediate language such as that of a hypothetical stack machine, or 
assembly and machine language. Every one of these "languages" is 
susceptible to its own set of correctness-preserving syntactic 
transformation rules in order to enhance utilization of its own operator 
repertoire. 

There are basically two reasons that make syntactic optimization of 
intermediate languages even more important than transformations on the 
original source. First, the "users" of such intermediate languages are 
programs, rather than human beings, that lack creativity, to say the 
least. Second, it is extremely unreasonable to expect the real user to 
express his program or query in such a way as to compensate or avoid the 
"inoptimalities" that will be introduced by the mechanical substitution 
nature of the translation phases, even if the user is aware of the details 

involved (which very often he is not and should not be) and it is 
theoretically possible (which, again, quite often it is not.) 



As a program (or query) gets translated' into a lower level language in 
each phase of the compilation process (at least conceptually,) its higher 
level (data and operation) abstractions get expanded into more elaborate 
detail. This successive translation can obscure some of the suitable cases 
for application of optimizing transformations to the.point where either 
they can no longer be detected, or it would require- a sophisticated 
pattern matching algorithm and some degree of semantic analysis (that in 
essence would "uncompile" pieces of the lower level code) to detect them. 
This fact shows the importance of distributing the task of optimization 
among the phases of compilation, rather than trying to optimize at the 
lowest level once, and of course, applies not only to syntactic, but to 
any type of optimization. 

We classify as syntactic optimization methods, those that involve 
transformations whose applicability can be 'determined by a superficial 
understanding of a program or query. Deciding which transformation rule 
is the most appropriate one at a given stage in a syntactic optimization 
process, can in fact be very much involved and complicated. Nevertheless, 
the information upon which the decision will be based are such that can be 
made available by a simple understanding of the notation or language in 
which the query or program is expressed, i.e. it merely involves syntactic 
properties of language constructs. Algebraic transformations, parse tree 
reordering techniques, and logical inference rules are all examples of 
syntactic methods of optimization. 

Much work has been done on optimization of programming languages and the 
literature on this subject is rich. Most of these classic methods also, 
are syntactic and apply equally to query languages as well. It is beyound 
the scope of this paper to consider these optimization techniques and 
those who are interested are refered to [ALL71] for a systematic review of 
many such methods. A more recent paper on this subject, [M0R79], presents 
a technique based on a purely boolean approach for global elimination of 
partial redundancies and performs in a single algorithm what is normally 
done by successive application of several algorithms. The particular 
redundancies dealt with in [M0R79] are redundant computations and loop 
invariants. The authors observe that for well structured programs, the 
cost of their algorithm is very nearly linear with respect to the length 
of the program, and is very slightly dependent on its graphical structure. 
Because this approach is basically boolean and does not take into account 
the shape of the graph on which it is applied, the method of [M0R79] is 
language independent and works on both implicit and explicit loops. 



3.0 SEMANTIC APPROACHES 

Tracking our model of a language into a specific program or query, we 
recognize that correspondingly, it consists of a specific view and a 
specific sequence of operators. (where sometimes, e.g. in case of 
non-procedural languages, no temporal notion is associated with the 
"sequence".) In case of a program, the view is the set of abstract data 
types and their instances used in that program and in case of a query, for 
instance one expressed in relational terms, the view would be .the set of 
relations used in the query. 

Between the two components, it seems that" the view is the principal 
constituent in the sense that it has a somewhat sounder effect on the 
algorithm of a program or query; it is possible to make, sometimes rather 
significant, changes to the sequence of operators in a query or program, 
without any significant changes to its view, whereas a change in view 
almost always mandates a change in the sequence of operators. This 
suggests that somehow, there is a tighter link between the semantics of a 
program or query and its view, than there is between the former and its 
sequence of operators. 

The above observation is the grounds for the distinction that we make 
between syntactic and semantic optimization techniques. Whereas syntactic 
optimization is limited by the constraint of making no significant changes 
to the view (and therefore the semantics) of a program or query, by 
semantic optimization we mean reformations that result in the 
re-expression of the intention of a program or query in such a way as to 
best utilize the data model of the given language. Notice the distinction 
that we make between intention and (formal) semantics; as changes are made 
to a program or query, preserving the latter is often a much stronger 
constraint (consequently, more limiting, but an easier goal to achieve) 
than preserving the former. 

The principal problem in preserving the intention is to discover it in the 
first place; intention and semantics are not only different concepts, but 
also there is often a wide gap separating them. Intention is easier to 
trace in case of non-procedural specification-like languages where a 
program or query is bound to represent the ultimate result more closely 
and more explicitly, than in case of procedural languages where even at 
the semantic level, each step of a program or query is still blind to its 
own role and contribution towards the ultimate result. Extensibility and 
augmentability (of the data model and the operator repertoire) in a 
language help to make users' intention tractable through the semantics of 
their program or query, by providing them with the means to construct and 
use whatever (operation or view) abstractions they feel (is closest to 
what) they want. Availability of low level abstractions, particularly in 
the form of atomic types and lower level data structures in the data model 



of a language, also makes intention more tractable through semantics, by 
giving users a choice to use abstractions which directly represent their 
desired results, instead of including them. 

Recalling our discussion on query vs. programming languages regarding the 
issues of extensibility, augmentability, and data model, should make it 
clear why we consider semantic optimization as a separate and important 
category in case of query languages. For most programming languages the 
distinction between syntactic and semantic optimization becomes blured 
and somewhat arbitrary because of the closeness between the semantics and 
intention of their constructs. Besides, pragmatically, it makes sense to 
do very little semantic modification to a program and generally what needs 
to be done can be handled by a set of transformations that are only 
slightly more involved with the semantics than syntactic transformations 
are. t 

To reiterate, it is not so vital to understand the intention of a program 
in order to do a good overall optimization job on it. One can always trust 
that the composer of a program is an intelligent being who is given a 
suitable set of tools and even though he may use them in a less than 
optimal order and context for convenience, he has a rather good sense of 
tool selection and generally will not use wildly improper tools; in 
particular, he usually will not generate more information than what he is 
going to need. At least, one can argue that the effort is better utilized 
if it is invested towards optimization of individual "tools" (i.e., 
abstractions) rather than in questioning and second guessing the wisdom of 
their use. 

The case of most query languages is different. Here the user has an 
unaugmentable set of operators and an unextensible data model which offers 
a rather high level data structure as a view. Without operation 
abstraction features and with limitted data abstraction capabilities,, the 

user does not have the suitable tools to succinctly express (or extract) 

the result that he wants. Instead, he often deals with information that 
contains the result which he seeks. This, in fact, shows a tradeoff in the 
design concept of query languages in order to gain generality, 
homogeniety, convenience, and ease of use, all at once. To do a good 

optimization job on a query, it is important to trace its user's intention 

through its semantics in order to find a better way to re-express it. In 
particular, it is important to detect and prevent generation of 
unnecessary and excessive information which is the result of application 

of non-precision all-purpose tools of the language, i.e. "too general" 
operators and a "too general" data model. In its simplest form, this 
involves cases like where a set is formed just to take a count of its 

members or to check if it is vacuous, or where it is not necessary to 

eliminate duplicate members in a set, etc. More involved semantic 
optimization would re-express the intention of a query in such a way as to 

make it susceptible to other optimization transformations, possibly in 

other "languages", in order to take advantage of its inherent properties, 

e.g. existance of more efficient data structures, parallelism, and 
concurrency. 



The recent trend of general-purpose very-high-level languages changes the 
above picture to some extent. There are now language processors that do in 
fact try to perform semantic transformations on their intermediate 
representation in order to utilize more efficient internal data 
structures, among which SETL, a set oriented programming language [SCH75] 
can serve as an example [SCH79]. 

Semantic methods of query optimization involve transformations whose 
applicability can be determined by the properties of the data model as 
they relate to the query. Dependencies and constraints implied by the 
axioms of the data model, as well as those implied by the user's and 
universal views of the data base can be used in conjunction with the 
semantics of the query to make inferences about the intention of the user. 
after such analysis, the intention of a query can be rephrased as to 
conform better with the above constraints. T 



4.0 ACCESS PATH APPROACHES 

The single most important distinguishing factor between query and 
programming languages is in their basic view of the storage hierarchy. 
The difference is in fact in the way that the secondary storage is treated 
by the language. 

Programming languages clearly differenciate between the main memory and 
the secondary storage. The main memory is the center of activity and any 
meaningful processing can be done only on information that resides there. 
The secondary storage is merely a repository of raw and inactive 
information upon which no processing can be performed directly. All 
programming languages then, have to provide a number of special purpose 
operators, called the I/O operators, for transfer of information between 
the two segregated levels o£ storage. Such transfers are thus very 
explicit and are regarded as "side effects" of the processing. that is 
taking place on the information which is already in the main memory, 
rather than being based on the merits of the. information on the secondary 
storage. (The second class treatment of secondary storage in programming 
languages can also be observed in the concept and structure behind the I/O 
operators themselves, which traditionally have shared and inherited a 
number of attributes such as rudimentary, low level, ugorderly, ad-hoc, 
and/or unbecoming of the language.) 

The clear separation of the two storage levels in programming languages, 
together with the explicitness of information transfer between them, make 
it extremely difficult to attempt to optimize such transfers 
(consequently, the program itself) in conjunction with the overall 
intention of a program. As a 'result, language processors do not generally 
go any further than applying few syntactic transformations in that regard. 

Query languages, on the other hand, see the secondary storage as a logical 
extention of the main memory and also share the built-in assumption that 
data, for the most part, resides on the secondary storage. Consequently, 
it is irrelevant for the user of a query language where a piece of 
information resides, and there is no need for explicit transfer of 
information by the so called I/O operators. The unified view of storage 
presented on the surface by query languages, is in sharp contrast with the 
view taken by programming languages, and makes it the responsibility of 
the languge processor to both optimize and judiciously perform transfers 
of information between the two levels. 

By access path optimization we mean transformations (usually on the 
intermediate representations of the query) or utilization of any other 
technique that will result in more efficient retrieval of information 
which is directly relevant to the result of the query. Access path 
optimization involves extensive knowledge about the data base instance in 
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question and its implementation details. Implementation details such as 
file and page organizations, availability of keys, indices, and links, 
and accessability of each in terms of existance of local copies, should 
all be the concern of this class of techniques. Transient properties such 
as domain volumes or distribution of the values of a particular field, and 
other coincidental properties of the data base instance which are not 
inherent in its implementation, can also be taken advantage of by access 
path optimization methods. A great deal of optimization efforts of 
systems such as System R fall under this category. 

An important subclass of access path optimization is optimal 
implementation of language operators in order to make retrieval more 
efficient. Examples of such techniques are .optimal implementation of 
relational algebraic operators, most significantly Joins as in [G0T75], 
and the dynamic feedback method of Rothnie in.'[R0T74]. 

Access path optimization also involves issues common to information 
retrieval. Some of the techniques in information retrieval, e.g. the one 
in [HAN77], can be readily used to solve a problem common with query 
processing, whereas some others, e.g. the one in [AH079] or in [YU78], are 
not so directly applicable. 

Modeling the organization of the data structures which together comprise a 
so called physical database, independently being a subject of 
considerable interest by itself, is also of significance from the point of 

view of access path optimization. We will consider this issue in the next 
section. 
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5.0 MODELING OF PHYSICAL ORGANIZATION 

Efforts towards modeling of physical organization of data bases date back 
to long before evolution of today's powerful, high-level, implementation 
independent query languages, which but intensify the significance of 
optimization. Generally, these efforts are aimed at capturing the 
characteristics of a (class of) data organization schemes into a model in 
which the cost of storage and/or the cost of access under the access 
method(s) supported by the organization can be formulated. Such a model, 
then, can be used to determine how well_ a particular data base 
organization fits in with the objectives of a specific system, or how does 
a data base organization rank among others covered by the same model in 
satisfying a given set of requirements; a valuable insight when one is to 
implement or reorganize a data base. 

A cursury look at the literature on analysis and modeling of data base 

organization shows a variety of papers emphasizing different aspects of 

the subject. Some models are based on very "qualitative parameters" and 

are meant to provide practical guidelines for selecting a data base 

organization by imposing a type of ordering on the commonly used 

organizations against a set of more or less subjective and case dependent 

parameter values, e.g. [SEV77], where the authors present a chart in 

which dominant data base retrieval activity is plotted in the three 

dimensional space of quantity of records retrieved, volume of online 

update, and speed of response. Others present detailed analysis of a 

particular data base organization [CAR75 and KEE74]. Few others propose 

simple yet relatively general analytical models with a number. of 

"quantitative parameters" providing degrees of freedom which make it 

possible for the same model to meaningfully cover a range of common data 

base organizations, e.g. [HSI70, SEV75, and YA077]. 

Even though the choice of a physical data base organization and its 

corresponding access methods are important topics in long term planning 

for overall optimal performance of a database system, we-are not here 

interested in this issue. Our interest is in models that are capable of 

expressing intrinsic attributes of a rather wide range of existing 

physical data base organizations in a manner which underlines the 

tradeoffs and compromises and contrasts explicitly the implicit features 

and preassumptions involved in the selection of a particular 

organization. For our purpose, using such a model is more preferable over 

utilizing a number of models each of which covers a specific data base 

organization or a few special cases in more elaborate detail, because a 

unified model can provide a framework in which generalized access 

algorithms and cost equations can be developed and used as the basis for 

generalized access path optimization techniques. 
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In [YA077] such a generalized model for physical data base organization is 
presented. Yao's model can be better understood when put in perspective 
with that of Hsiao and Harary [HSI70] and Severance [SEV75]. 

Hsiao and Harary present a formal model in which a data base is divided 
into a file of records and a directory. Each directory entry corresponds 
to a keyword and contains the value of the keyword being indexed, the 
total number of records which contain that keyword value, and the number 
and head pointers to the sublists of records which contain that keyword 
value. As one varies the number of sublists of records, the model will 
represent organizations ranging between a multilist (one single sublist 
per directory entry) and an inverted file (as many sublists per directory 
entry as there are records with a given keyword value.) This model, thus, 
is basically a one dimentional model, i.e. the only parameter in the model 
is the number of sublists per directory entry, f 

Severance observes that the model of Hsiao and Harary cannot describe 
organizations with other than strictly list oriented record sequencing 
and proposes a two dimensional model in [SEV75]. In this model the 
structure of each record may be data direct or data indirect, meaning the 
record contains the actual data or the record contains a pointer to the 
actual data, respectively. The inter-record connection can similarly be 
address sequential or pointer sequential, meaning that the successor 

record is physically contiguous or the record contains a pointer to its 

successor, respectively. The proportion of data indirect records and the 

proportion of pointer sequential records in a data base are the two 

parameters of Severance's model which covers organizations like 

sequential, list, (a kin o£) indexed sequential, and various inverted list 

organizations. 

Yao notices that Severance's model can only represent a maximum of one 

level of indexing using its notion of data indirection. He also mentions 

other shorcomings of the model, including the fact that it cannot 

represent various cellular list organizations and the lack of provisions 

to express the concept of partitioning a list into sublists [YA077]. 

Like Hsiao and Harary's, Yao's model also divides a data base into a 

directory and a file; however, each is broken into further levels. The 

directory consist of at least two levels of attributes and keywords, with 

zero or more index levels in between, depending on the particular 

organization being modeled. The function of the directory is to decode a 

given keyword (an "attribute-name,value pair"); the attribute-name is 

decoded (identified) at the attributes level and the value, at the 

keywords level. Index levels help this decoding by providing means of 

faster identification of the lower level items. 

The set of records that contain a keyword is called a k-set. The file 

contains the k-sets corresponding to the keywords in the directory; this 

is the record level. Because it is sometimes desirable to partition a 

k-set into several subsets, each contained in a storage bucket, another 

level, called the accession level, is introduced above the record level, 
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when required. Corresponding to each k-set, there is an accession list 
pointing to the storage buckets which comprise the k-set. A tree 
representation of the access paths in the data base makes an access tree. 
The access tree has its root at level 0, all attribute names appear at 
level 1, followed by index levels, if any, the keywords level, the 
accession level, and finally, the records level as leaves of the tree at 
level n. Connectivity between the nodes of the access tree may be address 
sequential Or pointer sequential, as in Severance's model. The set of 
nodes with the same immediate parent is called the filial set. The access 
tree levels, the average number of nodes per filial set in each level, and 
the proportion of pointer sequential connections at each level are the 
parameters of the model which together describe the static structure of a 
data base organization. The ratio of the free space distributed in the 
sequential blocks (buckets) of the filial sets.at each level in order to 
delay an overflow, and a threshold ratio for' each level after which an 
overflow would be handled by splitting of the filial set, as opposed to 
chaining, are the parameters that define the dynamic structure of the data 
base for updates and insertions. 

Examples of how several of the most commonly used data base organizations 
can be represented are included in [YA077] to show the generality of this 
model; they include inverted, multilist, cellular, and indexed sequential 
organizations. Generalized access algorithms for search and retrieval in 
the directory and the file are presented and generalized equations for the 
costs of storage and access time are developed based on the model. It is 
shown that Cardenas's cost equations for the inverted data base 
organization [CAR75] can be derived from this generalized equations as a 
special case. 

-14-



6.0 SURVEY OF LITERATURE ON QUERY- OPTIMIZATION 

6.1 AHO, 1978 

A subset of relational algebra is considered as a query language in 
[AH078], which presents a formal study of the issues related to the 
optimization of queries expressed in this language. This subset is 
restricted to the three relational operators select, project, and natural 
join, and expressions in this language are called SPJ-expressions. Even 
though select, project, and join are not "relationally complete," SPJ 
expressions are powerful enough to cover most of the common queries. In 
passing, it should be mentioned that relational completeness as an 
indicator of the power of a language is itself the subject of some debate 
and. Codd's definition of relational completeness, which is based on his 
version of relational calculus [C0D72], has been questioned by many, among 
them [BAN78] and [CHA79]. In [CHA79], a class o£ queries called computable 
queries, is identified. Focusing on computable queries, the concept of 
boundedness, expressiveness, and completeness are defined and these 
definitions are compared to those of [C0D72] and BAN78]. 

At the heart of the problem of optimization, is the issue of equivalence 
of two queries. In[ AH078 , the authors define two notions, of 
equivalence, weak equivalence, which is motivated by and relies on the 
universal relation assumption, and strong equivalence, which implies weak 
equivalence but is a stronger condition than the latter. 

Next, the concept of a tableau, a two dimensional representation of 
SPJ-expressions, is defined. Tableaux are very much like a subset of QBE 
and are a subclass of the "conjunctive queries" of [CHAN77]. Since 
tableaux are another representation of SPJ-expressions, they are not 
relationally complete. In fact, even conjunctive queries of [CHAN77] are 
not relationally complete [SAG78]. It is shown in [AH078] that the 
equivalence and optimization problem of SPJ-expressions can be reduced to 
analogous problems for tableaux. The advantage of the tableaux approach, 
however, is that it makes it possible to deal with functional dependencies 
in a mechanical manner. [AH078] gives algorithms for converting an 
SPJ-expression to a tableau, based on either definition of equivalence. 
Even thouth the authors state that they do not know of an efficient 
algorithm to construct an SPJ-expression, given a tableau in general, they 
cite a reference where an efficient algorithm is given that works on a 
special subset of tableaux, called simple tableaux. [AH078] gives a formal 
definition for simple tableaux and observes that "natural" queries 
expressed as SPJ-expressions often have simple tableaux. 
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The key idea in the equivalence test of two tableaux is the "containment 

mapping", which is a mapping from the rows of one tableau to another. 
Containment mapping is also at the heart of tableaux minimization, a 

process for elimination of the rows of a tableau whose closure is covered 

by other rows. Since the number of rows in a tableau is related to the 

number of joins in its corresponding SPJ-expression, minimization 
corresponds to elimination of joins, where possible. 

In general, minimization and test for equivalence are NP-complete 

problems, even in case of tableaux. However, for simple tableaux, [AH078] 

shows that there exist solutions for these problems that run in polynomial 

time, no longer than the fourth power of the size of the tableaux 

involved. 

6.2 CHANDRA, 1977 
ti

First order queries are formally defined as what roughly corresponds to 

first order logic. Conjunctive queries are then defined as a subset of 

first order queries where only conjunction (AND) and existential 

quantifiers are permitted. Conjunctive queries include a large number of 

"natural" queries and many more general first order queries are indeed in 

part conjunctive, e.g. a first order query expressed in disjunctive normal 

form can be expressed as the union of a number of conjunctive queries. 

Conjunctive queries are at the heart of QBE, which then builds on this 

core to support more general queries, and they are also a superclass of 

the tableaux of [AH078]. Nevertheless, conjunctive queries are not 

relationally complete, unless two additional operators, union and 

difference, are also incorporated [SAG78]. 

In [CHA77], the authors show that every conjunctive query has a unique (up 

to isomorphism, i.e. renaming) minimal equivalent query which can be 

obtained from the original query by "combining variables." This result is 

similar to the existance of minimal Finite State Automata, which are 

obtained by "combining states." Combining variables, like combining 

states in FSA, has the Church-Rosser property, which means that regardless 

of the order in which variables are combined, one will eventually get to 

the same unique minimal result. Hoever, it is proved in [CHA77] that 

unlike the case for Deterministic Finite State Automata, minimization of 

conjunctive queries (as well as the problem of their equivalence) is an 

NP-complete problem. 
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6.3 CLAUSEN, 1980 

In [CLA8o] a relational data base system, called TGR, is described which 
uses microprogrammed data base primitives for searching. Data base 
queries are presented to the system in the form of relational calculus 
expressions. The optimization algorithm works on relational calculus 
expression"s in conjunctive normal form. The major optimization concept in 
[CLA80] is the idea of dynamic feedback optimization which can be 
classified as a semantic approach to optimization. The method is adapted 
from [R0T74] and can best be explained through an example. The following 
example is taken from [CLA80] directly. Consider the two relations R1 and 
R2 shown below: 

Relation R1 

Relation R2 

Al A2 
3 6 
4 5 
10 2 
15 0 

Al A2 
2 8 
5 7 
9 6 
8 3 

Now, consider a query equivalent to: 

get R1.Al:for-all R2(R1.A1>R2.A1&R1.A2<R2.A2) 

The above query is executed as follows: 

For the tuple <3,6> from R1, relation R2 is scanned to see if the 
qualification of the query is satisfied, i.e. for-all 
R2(3>R2.A1&6<R2.A2). The qualification is not satisfied because of the 
tuple <5,7> of R2. From this we gain the information that if condition 
F1=(tl.A1<=Sltl.A2>=7) is true for a tuple tl in R1, then the query's 
qualification is bound to fail for tl. This eliminates the need to scan 
tuples of R2 for such tuples of R1, entirely. F1 is called an elimination 
filter. 

Similarly, the fact that the tuple <10,2> of R1 satisfies the query's 
qualification, leads to another filter, F2=(tl.A1>=10&tl.A2<=2), called a 
true filter. A true filter such as F2, when satisfied for a tuple tl in El, 
eliminates the need to scan through R2 and designates tl as satisfying the 
qualification of the query, automatically. 
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A third possibility for optimization which is only mentioned in [CLA80], 
but is implemented in TGR is prevention of duplicate tuple formation. This 
method too is based on that of Rothnie's as implemented in DAMAS [R0T74]. 
Suppose that while scanning the tuples of relation R we encountered a 
tuple such as <1,2,3>. Let us assume that the true and'elimination filters 
are currently such that this tuple will pass to be incorporated in the 
result, and let us further assume that the result is (or uses) the last 
two fields of each tuple of R only, e.g. <2,3> in case of the tuple in 
question. This means that any other tuple of R whose last two fields are 
<2,3> is superfluous and its incorporation in the result will merely yield 
duplicate tuples. Thus a third filter, say F3, is constructed for relation 
R which eliminates all such tuples, preventing their unnecessary 
participation in further operations and saving the corresponding scans of 
other relations involved. 

The above examples were in fact simple. In practice, there are more 
complex queries and queries which deal with multi-variable expressions 
(as opposed to the above example where only two variables, i.e., two 
relation scans, were• involved.) Because this method does not always 
guarantee an optimal, or even more efficient execution, guidelines should 
be developed as to where and when to use each of the filters. In TGR (and 
DAMAS), they use three options to enable/disable each filter mechanism. 
However, the problem of when to set/reset an option is not satisfactorily 
solved. 

In terms of relational algebra, this approach is similar to combining a 
selection with other relational algebraic operations, in particular, with 
joins, and being able to modify the selection filter dynamically. 
However, the actual building of the filters, or in fact the filter 
templates as in [CLA80], requires a global understanding of the whole 
query. This kind of information is less explicit when a query is expressed 
in terms of a procedural language such as relational algebra, as opposed 
to when it is written in a descriptive language such as relational 
calculus. 

6.4 HALL, 1976 

In [HAL76] a single query defined in relational algebra is considered. 
The paper advocates that the overhead of optimization should be removed in 
case of experienced users who express themselves concisely. However, it is 
not at all clear how this objective is met or even addressed in the 
proposed method. The method presented in this paper is purely syntactic. 
The author considers two types of transformations, namely, reordering of 
operators, and recognition of common subexpressions. The author's 
criteria for transformations considered in his paper is that "because it 
is extremely difficult to estimate cost, it is best to avoid 
transformations that depend critically on cost." This criteria can be 
better understood considering the limit to which cost can be defined on a 
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purely syntactic basis. The four types of transformations presented in 
this paper are: 

• Combining sequences of selections into a single selection 
This is achieved by combining filters of each of the selections in the 
sequence into a conjunction. Combining filters has two advantages. 
First, it can be cheaper to evaluate the conjunction than to evaluate 
the filters one by one; and second, the boolean proposition obtained 
after conjunction can be simplified. 

• Combining sequences of projections 
A sequence of projections can be reduced to a single projection. In 
some systems, such as the author's PRTV system, where each projection 
implies a sort, this transformation is very important. 

• Idempotency and null relations 
Any relational operation with null relation as one of its operands is 
redundant and can be removed. Further, idempotency laws of relational 
algebra permit transformations like replacement of the union of a 
relation with itself by the same relation. Similarly, null expression 
and idempotency laws of boolean algebra can be utilized as 
transformation rules. 

In general, idempotency rules, null relation and expression removal, 
and common subexpression removal should be done concurrently. A 
general common subexpression identification algorithm is presented in 
[HA74b]. This algorithm transforms the parse tree into a lattice. In 
short, it starts at the bottom of the tree and climbing one level at a 
time, removes all common subexpressions, while applying idempotency 
laws of relational and boolean algebra, and removing expressions 
involving null relations. The method is theoretically sound and is 
proved to be correct.. The same algorithm is used in [HAL76] and it is 
also the basis for similar algorithms used by other authors. 

Moving Selections towards leaves of the tree 
For each relational algebra operation there is a distributive law that 

can be used to distribute selection over that operation. The paper 

gives these distributive laws for all operations and presents an 
algorithm for pushing selections down a tree. 

In case of join the factor & residue method of [HA74a] is used. The 

same technique is used by several others. 

Distributing a selection filter over a union does not necessarily 

improve performance. If the two relations are disjoint, then we cannot 
lose by distribution of selection. If the two relations overlap, then 

applying the selection filter twice for the common tuples may well 

offset the saving by reduction in cardinality. If there is no 

significant reduction in cardinality, then we may lose by 

distributing the selection. This is a case where mere syntactic 
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information is not sufficient for optimization. Disjointness of the 
two relations can be determined through the data base definition. 
Determination of cardinalities may involve deeper implementation and 
instance dependent information. 

In case of distributing a selection over an intersection or a 
difference, the the above mentioned worsening due to insignificant 
changes in cardinality will be accented. 

For joins, particularly as they approach cartesian product, 
distribution of selection is always an improvement. 

6.5 HANANI, 1977 

The method of [HAN77] aims at optimizing evaluation of a boolean 
expression represented as an AND/OR tree, and even though it is assumed 
that the expression is to be evaluated for the records of a file, it can in 
fact be extended to work in case of several files as well. It is very 
desirable to have this sort of intelligence either in the data management 
system underlying the data base, or at≥a level as close to the data 
management level as possible, so that higher levels will not be bothered 
with the implementation and instate dependent details involved. 

In Hanani's approach, two numbers are associated with every terminal node 
I of the tree, a t(I), the time it takes to check whether a given record 
has the attribute I, and a p(I), the probability that a given record has 
the attribute I. The papaer suggests using the frequency of the records 
having attribute I as p(I), and the count of machine instructions 
required to decide whether a record has the attribute I as t(I). 

Two theorems are then presented which make it possible to associate two 
similar numbers, t and p, with every non-terminal (AND or OR) node in the 
tree. For a non-terminal node, t and p are the minimum time required to 
check whether the subexpression represented by the node evaluates to true 
for a given record, and the probability that it evaluates to true, 
respectively. 

Finally, an evaluation algorithm is presented which based on an ordering 
imposed by the t and p values, evaluates the expression in optimal time. 

In [LAI79] an extension of Hanani's method is presented which makes it 
possible to handle "records" whose fields are not all available at the 
same time, i.e. some cost may be involved in retrieval of certain 
secondary fields. This clearly also handles the case where a query is 
dealing with several records of different files at the same time. Laird's 
method is essentially the same as that of Hanani, except that three valued 
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logic is used instead of the standard boolean logic. The third value of 
undefined is assigned as the value of any relational expression I 
involving unavailable attributes. The thorems and the algorithm are then 
extended to handle this three valued logic. 

In [GUD79] a basic implicit assumption of Hanani's algorithm is discussed 
which in practice will lead to non-optimal solutions. The main assumption 
under which Hanani's approach will in fact yield optimal results is that 
each keyword (attribute) can appear in the query only once. This means 
that the query I1&I2II1&I3 is not a valid query in Hanani's method. 
Suggestions are made which even though do not remove this restriction 
entirely, extend Hanani's algorithm to include most of the practically 
interesting cases. The proposed extension breaks the one-to-one 
correspondance between attributes and keywords .and while it still expects 
each keyword in the query to be unique, it permits different keywords in a 
query to have the same attribute. Consequently, a query like 
DEGREE=BSC&(AGE<30)IDEGREE=MSC&(AGE<40) will be an acceptable, query under 
the extension of [GUD79], whereas in Hanani's original method, it is not. 

6.6 PALERMO, 1972 

In [C0D72] an algorithm is presented for the reduction of relational 
calculus expressions to relational algebra formulae. This reduction 
algorithm is in no sense meant to be an efficient or a practical method, 
and merely serves to prove the possibility of such conversion and 
existence of such an algorithm. Palermo, in [PAL72], takes Codd's 
algorithm as a basis and through a number of improvements, yields a more 
efficient reduction algorithm. The improvements are simple and 
intuitively clear in nature but are introduced and discussed in a 
mathematical framework. The end result is an algorithm for reduction of 
relational calculus expressions to relational algebra, which unlike that 
of Codd's, is practically viable. 

One major improvement discussed in [PAL72] is substitution of the 
construction of the cartesian product of relations defined for each 
variable of the query, by formation of joins and unions. This leads to a 
gradual growth of the result, as opposed to gradual trimming of Codd's 
cartesian product. 

Semi-join, an intermediate object introduced in [PAL72], is a 
formalization of the concept of constructing a secondary index on the join 
field of a relation. Semi-joins can be utilized to prevent multiple 
retrieval of tuples and make it possible to construct an algorithm in 
which the order of exploring relations can be determined dynamically. 
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6.7 PECHERER, 1976 

Searching the product space of large sets is a common problem in all 
languages supporting a set like view of data, and often requires the 
movement of enormous quantities of data. Of course, explicit search of the 
product space is not always required; directories and secondary indexes 
can be utilized to reduce references to and the volume of the product 
space. However, these techniques do not eliminate the problem. 

[PECH76] first considers the product of n relations (sets of tuples) and 
presents a method for finding an optimal order to obtain the product 
through nested iterations. Since the result (output) is independent of the 
order in which the product is formed (the order of the nested loops), the 
objective is to find an ordering that reduces the amount of input. 
Pecherer proves that the ordering is optimal if and only if the ratio 
Vi/(Ni-l) is in non-increasing order for i=1 to n representing the order 
of relations; where Ni is the number of tuples in relation i and Vi is the 
total volume of relation i in bits. 

Next, [PEC76] considers restricted products (products followed by a 
selection) and observes that the input data volume is minimized if the 
input tuples are filtered as soon as possible. When for all i, the 
probability of tuples of relation Ri appearing in the final restricted 
product (i.e. the probability of the tuples of relation Ri satisfying the 
filtering predicate) are known and are independent of each other, [PEC76] 
gives a more general version of the Vi/(Ni-l) ratio whose non-increasing 
order yields a guaranteed optimal ordering for the relations. 

Last, [PEC76] discusses a slightly improved iteration technique and, once 
more, modifies the Vi/(Ni-l) ratio such that its non-increasing order 
would reflect the optimal order in which the product can be formed. 

The analysis of [PEC76] is based on the assumption of a single processor, 
limited memory, and single channel to access the relations. 

In his thesis [PEC75], Pecherer deals with efficient retrieval in 
relational databases and gives efficient algorithms for four relational 
operators, restrict (select), product, project, and division. He also 
shows that these operators are sufficient for expressing almost all 
relational queries. 

A related work is that of Kambayashi who in [KAM79] discusses utilization 
of functional and multivalued°dependencies in order to find an efficient 
ordering to perform joins. The method of [KAM79] yields the optimal 
ordering for joins in a special case. 
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6.8 ROTHNIE, 1974 

In [ROT74] a relational data base system called DAMAS, developed at MIT, 
is discussed. The paper presents a promising approach to query 
optimization but only in an implicit form and wrapped in the 
architechtural details and implementational idiosyncrasies of DAMAS. The 
paper is not intended to be an "optimization paper" and talks about DAMAS 
in general. The novel dynamic feedback optimization method of Rothnie is 
adapted by Clausen [CLA80] in another relational data base system called 
TGR, and is discussed elsewhere in this paper. 

6.9 SAGIV, 1978 

A generalization of tableaux 
proposed. It is noted that 
expressions involving the three 
conjunctive queries of [CHA77] 
relationally complete, unless 
difference, are also permitted. 

of [AH078], called sets of tableaux, is 
neither tableaux, which correspond to 
operations select, project, and join, nor 
which are a superclass of tableaux, are 
two additional operations, union and 

The generalization of tableaux in [SAG78] incorporates into sets of 
tableaux the union operator and shows that every relational expression 
involving the operators select, project, join, and union, can be 
represented by a set of tableaux. The theory of tableaux can easily be 
extended to sets of tableaux. 

Sets of tableaux are further generalized to sets of elementary differences 
in order to also include the difference operator to a limited extent; thus 
every relational expression involving the five oprators select, project, 
join, union, and difference, in which the project operator is not applied 
to subexpressions that include the difference operator, can be 
represented as a set of elementary differences. 

Next, the problem of containment for single tableaux is considered 
[AH078], and it is shown to be NP-complete. Because containment is at the 
heart of equivalnece test and minimization, it follows that these problems 
are also NP-complete for single tableaux, sets of tableaux, and sets of 
elementary differences. Yet, polynomial-time algorithms for three special 
cases which correspond to some class of practically useful queries are 
presented. 

Three transformations that can be applied to sets 
differences to obtain equivalent forms are introduced in 
transformations have the finite Church-Rosser property 

of elementary 
[SAG78]. These 
and employ the 
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containment test for single tableaux. Finally, a necessary and sufficient 
condition for the equivalence of two sets of elementary differences that 
are irreducible under these transformations is proved. 

6.10 SMITH, 1975 

In [SMI75] the architecture of a smart relational database interface is 
presented. A relational algebra interface, called SQIRAL, which follows 
this approach is discussed. The type of optimizations performed is mostly 
syntactic tree-manipulation like in Hall's, with some semantic and simple 
access path methods such as coordinating sort grders, using indexes, and 
maintaining locality in page referencing, also being exploited. 

The paper presents a good systematic description of query optimization 
process regarded as a special purpose programmer who aids the user in 
efficient query implementation. The significant concept in this automatic 
programming approach is the exploitation of concurrency. Each operator is 
viewd as an independent task with a well defined interface. The 
concurrency inherent in the query can be taken advantage of if each task 
is allowed to begin execution as soon as•:it has a sufficient number of 
tuples on which to operate. Some tasks, such as selection, will be able 
to work on single tuples; these operator tasks can be pipelined. Others 
would require entire relations before they can operate. 

Pipelining and paralleling of operations are important optimization 
issues even when multiple (real or virtual) processors are not available. 
In [BUR76] these isseues are addressed in the context of set oriented 
programming languages. In [ARB80] the same issues are discussed utilizing 
the approach of [BUR76], with the target of discussion being a very high 
level database manipulation language. 

6.11 STROET, 1979 

In [STR79], Stroet and Engmann present a formal syntax for expressions 
based on relational algebra. As a query (a relational algebra expression) 
is analyzed, a tree is constructed and the optimization phase consists of 
applying tree transformations which will improve the evaluation of the 
query. Transformations are very similar to those used by Hall, except that 
here, they explicitly deal with trees. 

The formal syntax for relational algebraic expressions is included in the 
appendix and the paper gives a good formal coverage of tree manipulation 
techniques for syntactic optimization of queries. 
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6.12 YAO, 1979 

In [YA079] the problem of access path optimization is considered. A model 
is presented for systematic synthesis (or analysis) of:a large collection 
of "two-variable" query access strategies which otherwise would have to be 
analyzed separately and individually. It, thus, serves as a general 
framework within which different access strategies can be represented, 
analyzed, and compared, using a unified approach. 

Because Yao`s model deals with simple queries which only refer to one or 
two relations, the approach requires an external heuristic procedure for 
decomposition of complex queries into simple ones (i.e. semantic 
optimization). Once this is done, for each siniple query it is possible to 
find the optimal access path using the model. Basically, it is also 
possible for the heuristic decomposer to use the model and its cost 
factors to reach a better decomposition resulting in a "more optimal" 
overall performance for the complex query. 

The model recognizes seven basic classes of single relation access 
strategies based on the order in which relational algebraic operations 
Restrict (select), Project, and Join are applied, whether or not 
inter-relation links (one-to-many relationships between fields of two 
relations) are used to access tuples, and, finally, when records (tuples) 
are actually retrieved. Some classes have variations reflecting minor 
reorderings of operator sequences that do not really change the class 
properties. For example, RAJ represents class 1 of single relation access 
strategies and includes all such strategies which begin with a 
restriction (selection), R, followed by access (actual retrieval of a 
record), A, and, finally, a join, J. Depending on where a projection 
operator, P, is inserted, RAPJ and RAJP represent two other variations of 
the same class. Another example is class 7 which includes the two 
variants LRA and RLA, where L represents the use of an inter-relation link 
traversal method. 

Two-relation access strategies are classified by identifying which basic 
single-relation access strategy is used for each of the two relations 
involved, e.g. RAJ/RAJ. The possible combinations of the seven basic 
single query access strategies lead to 31 basic types of two-relation 
access algorithms, or 339 if one counts all individual variations of each 
class. 

In a given data base implementation it may quite well be that not all 
seven basic access strategies can be supported by the storage structure, 
and this may eliminate many of the theoretically feasible two-relation 
access strategies. A summary of storage structure requirements to support 
each of the seven basic access classes is presented in [YA079], and based 
on the assumption that "cost" is measured by the number of page accesses, 

cost equations for each access operator is quoted from [YA78b] which 
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contains their detailed derivations. Costs for single and two-relation 
access strategies are then computed using these access operator costs. 

An obvious application of this cost model is to use it when several access 
algorithms are available, in order to choose the most•appropriate one for 
a query. This approach will yield the optimum result only if the optimal 
access algorithm for the specific query under consideration is available 
on that particular data base implementation. Given the rather large 
number of possibilities, very often a compromise is made and only few 
different access algorithms are implemented, e.g, in System R. This can 
severely limit the number of choices, thus, defeating the purpose of a 
detailed cost model with fine resolution when the end result is selection 
of one of a few coarse and bulky options. For example, even though Yao's 
model can be used to evaluate the performance of the System R's optimizer 
by cheking how close it gets to the optimum given by the model, one may not 
automatically conclude that incorporation of this model in System R for 
the purpose of access algorithm selection will be an improvement, unless 
many more access strategies are also implemented. 

Another application of the model, as briefly discussed in [YA079], is to 
use it in conjunction with a synthesizer program which forms an access 
algorithm for each simple query out of the well defined access operators, 
based on the type of the query and using operator costs as the measure for 
optimality. This method will result in the best access algorithm for every 
simple query, to the limit of the capabalities of a given storage 
structure. Notice, however, that this dynamic access algorithm 
synthesizer will not replace the heuristics for decomposition of complex 
queries. 
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