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ABSTRACT 

This paper investigates an operational semantics model for a very high level 
data base manipulation language. The target machine of the operational 
semantics system is an applicative programming system. Use of the target 
machine in compilation, as the model for an implementation independent 
intermediate language, is considered, and its susceptibility to a class of 
optimization transformations is shown. 
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1.0 INTRODUCTION 

a 

„ The purpose of this paper is to investigate a method of expressing the formal 
semantics of a very high level language. This language, which we will call 
"VHLL", is introduced in [1]. It is under study as the language component of an 
environment for the specification and development of application systems [8]. 
The semantic system involved is a type of operational semantic system (see 
below), and the notation used is a subset of LISP. The paper does not present a 
complete formal semantics, but rather develops the method and explores its 
potential. 

The reasons for our interest in formal semantics are twofold. First, WILL, a 
set-oriented language intended to manipulate data bases in a rather transparent 
fashion, involves many as yet unresolved, and some as yet unaddressed, semantic 
problems. The effort to associate precise meanings with the language constructs 
is an important means of identifying ambiguities and anomalies. The second 
reason for our interest is implementation-related. For VHLL to serve the 
purposes for which it is intended, there must be an associated language 
processor which is highly portable with respect to target languages and data 
management systems, and at the same time, provides significant optimization. 
These twin goals dictate the use of table-driven compilation and 
"back-end-independent" intermediate language. Operational semantics can be 
used to provide insight in the properties of the intermediate language(s) 
involved. 

For example, more than one level of intermediate language might be used, with 
the first level relatively non-procedural. This level, together with a suitable 
abstract description of stored data organizations, would serve as a basis for 
gross operation sequencing decisions (major changes to program organization). 
The second level might be more procedural, expressing the results o£ those 
decisions, but still target-environment independent. (The third major step in 
the compilation would then be the translation of that language to the target HLL 
plus data management calls.) 

a 

One way of satisfying the intermediate language requirements of the above scheme 
is to use a slightly modified subset of the source language at the first level, 
and then an applicative language such as LISP at the second level. The latter is 
capable of expressing the full semantics of the language, and of expressing 
calculation sequences, in terms of its own, very well defined, environment. A 
less ambitious strategy would be to translate VHLL to the second level directly, 
avoiding global optimization, and utilizing storage-based criteria, expressed 
in abstract terms, for local alternative selection. If the latter approach is 
adopted, some important optimizations can be applied at the LISP (or its 
equivalent) level. 

We thus view the development of a formal semantics for WILL not only as a 
language definition method, but also as a step toward the definition of a 
language processor. 



Sections 2 and 3 below introduce the semantic model and the basic semantic 
functions used in the report. Section 4 gives "translation rules" for some 
basic VHLL forms, and section 5 gives examples of how the model and these rules 
may be used to deal with WILL expressions. In section 6, formal definitions are 
given for the semantic functions introduced in section 3. The definitions are 
constructed so as to be useful in certain optimizations. These optimizations, 
useful in set-oriented languages, are discussed in section 7. 

(Note: A familiarity with LISP [9] is needed to follow many details of the 
discussion, especially in the last two sections. Also, a cursory reading of an 
introduction to WILL [1] would be helpful, but is not necessary.) 

v 



2.0 THE SEMANTIC MODEL 

There are three popular styles of formal definition of semantics as we summarize 
from [4]: operational, functional, and axiomatic. 

Operational semantics associates with a program and its input a computation. A 
computation is a (possibly non-terminating) procedure which given an input 
state, returns a new state in some abstract machine, which we will refer to as 
the target machine. It is not uncommon to define a language using a 
well-understood subset of the same language as that abstract machine. In such 
cases, the very same semantic definitions can be used for implementation of the. 
language by bootstrapping. 

Functional semantics associates with a program a mathematical function which 
maps from the input domain of the program to its output .domain. The result of 
the function for a specific input I is a special "undefined" value if the 
program does not halt for input I. Denotational semantics .is a method of 
functional semantics definition which is very commonly used. The denotational 
method closely relates the semantics of a program to its syntactic components. 
In this method the syntactic primitives (terminals of the parse tree) are 
directly given a "meaning". The meaning of each higher level construct. (in the 
parse tree) is -then calculated from the -meanings of its direct constituents. In 
principle, the "meanings" in a denotational definition can be in almost any 
domain. For example the meaning of an assignment statement is often a function 
from a "before" snapshot to an "after" snapshot, whereas the meaning of a 
program is normally a function mapping from its input domain to its domain of 
output. 

Axiomatic semantics associates with a program a set. of input and output logical 
assertions, usually in first order predicate calculus. A sentence like I{P}0 
expresses the fact that for all input states satisfying the input assertion I, 
if the execution of program (segment) P terminates, then the output state will 
satisfy the output assertion 0. An axiomatic semantic definition of a language 
is a formal system allowing the derivation of true sentences about the 
input/output behavior of a program segment from the axioms. 

The semantic system used here is an operational semantic system. The language 
used to express the semantics is a subset of LISP confined to its functional 
(applicative) feature. The program feature of LISP is used in section 6 to 
define some of the basic semantic functions, but semantic definitions themselves 
are in an applicative form. 

The merits of applicative programming systems (of which LISP is a relative) are 
discussed in the excellent paper by John Backus [5]. Unfortunately, as he 
points out, in their current form they cannot replace conventional programming` 
languages, in spite of their elegance and useful theoretical properties. Burge 
attempts to overcome the impracticality of these systems in [7] by introducing a 



language which incorporates some of the more conventional syntactic (and 

structural) constructs into an essentially applicative system. 

A set-oriented language is inherently less restricted by the a-word-at-a-time 

pattern of assignments which Backus calls the "bon Neumann bottleneck", than a 

conventional language. An applicative system used as the semantic back-bone of 

a set-oriented language may thus find it easier to radiate some of its 

properties through. It might also be feasible to take advantage of the 

reductional semantics [5] which is inherent in the nature of applicative systems 

for optimization purposes. In fact [2] is a clear attempt in that direction and 

has motivated the work presented here in section 7. 

2.1 THE TARGET MACHINE 

The target machine of the semantics system is a simple LISP machine. It uses the 
definitions given here to build a set of basic semantic functions out of 
standard LISP operations. (Alternatively, the model can be more sophisticated 

and include the semantic functions as standard operations.) 

The basic objects manipulated by VHLL are sets of atoms and sets of tuples 
representing sets of associations. Sets of associations can be referenced as 
functions. A function reference in VHLL is translated either to a reference to 
a counterpart function or to a scan over a set of tuples in the target machine. 
This distinction in the model relates to the use of the semantic notation as an 
intermediate language. Counterpart functions represent the case where the real 
data organization provides easy access in the "domain to range" direction or 
where the functions are defined algorithmically. 

In what follows, we will use some names (of sets, variables, and functions) both 
in VHLL expressions and in their equivalent semantic expressions. However, it 
should be clear that we are dealing with two disjoint domains of discourse, and 
this dual use of names is mainly to hint at the logical relationship between the 
corresponding components in these domains. (It is common to use underscored or 
overbarred names in the domain of semantics, but, currently, we choose not to 
use such conventions.) 

2.2 SETS AND MULTISETS 

Generally, in VHLL, a set is a multiset, i.e. it may contain some duplicate 
members. Thus sets and multisets are not different data types, rather, a set is 
a special case of a multiset. We tend to use the generic term "set" when 
referring to either form, except when it is important to make a distinction. A 
VHLL set is simply mapped into a list. However, the inherent ordering of the 
list representation is irrelevant in this case. 



The reason for the use of multisets is performance related. Since VHLL is 
designed to manipulate large data bases, generally the "sets" which one would be 
dealing with are large. If sets were defined to be real sets, i.e. no 
duplicates, the burden of detection of duplicates in each and every computation 
result, including the intermediate results, would make the language excessively 
inefficient and impractical. To make matters worse, this task of deleting the 
duplicates is generally unnecessary in that most often, the usage of a set is 
such that it does not really matter if it actually contained some duplicates. 
Consequently, many language designers abandon the concept of "sets," and 
introduce into their languages an explicit form for the deletion of duplicates 
from a multiset, to be used only when and where it really matters. 

However, multisets represent a solution to the performance problem only if no 
significance is associated with the multiplicities of their members (i.e., how 
many duplicates there are for each member). Otherwise, preservation of the 
implicit information that can be concluded from these multiplicities by 
correlating them to (the user's conception of) the execution •path, may 
drastically limit optimization. Thus in WILL we have defined multisets such 
that their intention is the same as the intention of sets, i.e. no meaningful 
information may be concluded from the multiplicities of their members, although 
their extension is different than that of sets, i.e. they include duplicates. 

A set variable in our semantic domain will have a number of "properties" 
associated with it: 

• TYPE 

This property will have the value 'SET' for all set variables. 

• DUPS 

A false (NIL) value for DUPS property of a set variable guarantees that it 
contains no duplicate members, i.e. it is a "set." When DUPS is true, the 
set can be suspected to include duplicates. 

2.3 TUPLES 

Individual WILL tuples are also mapped into lists, here, of course, exploiting 
the ordering of the list representation to reflect the order of the elements of 
the tuple. 

A tuple variable in our semantic domain will have following properties 
associated with it: 

• TYPE 

The TYPE property of all tuple variables have the value TUPLE. 



3.0 BASIC SEMANTIC FUNCTIONS 

In this section we present a set of functions which will be used as tools in 
construction of the semantics of VHLL. Since we will be using the lambda 
notation extensively, it is worthwhile to include a brief informal definition of 
this notation at this point. A formal treatment of the subject can be found in 

[lo], [5], or [7]. 

Lambda calculus is a formal system due to Church [10] which does away with the 
ambiguity involved in the conventional notation for functions in mathematics. 
The conventional notation, e.g. f(x)=x+1, leads to ambiguity because it does not 
distinguish between the function and its value at an undefined point x. In 
other words, referring to function f above, the answer to the two questions 
"What is the function f?" and "What is the value of f at x?" is the same, namely, 

x+1. This becomes an important distinction to be made when we are dealing with 
functions that accept other functions as arguments and return functions as their 
results. In mathematics, these "functions" are sometimes called operators or 
transformers, and, to avoid ambiguity, special notation has been adopted in some 

specific cases, e.g. integration. 

R 

The above ambiguity is due to the fact that there is no way to express a 

"function constant", i.e. to define a function without at the same time giving 

it a name. The lambda notation resolves this ambiguity by introducing an 

explicit notation for the concept of a function. In this notation Ax.x+l is a 

constant value much the same way as 2 is. They are both "constants" but of 

different types, the latter is of type integer whereas the former is of type 

function. Both constants may be assigned to variables in which case the 

symbolic name of the variable would stand for the assigned value. A function 

constant may appear anywhere a function name is used in an expression, just like 

the case for variables and constants. The function (constant) ax.x+1 is quite 

different than the expression x+1. In lambda notation A is a special symbol 

which denotes a function. Following A and before the period is a list of the 

arguments of the function and after the period comes the expression that 

evaluates the function. Now if f is defined to be the function ax.x+1, there is 

no ambiguity between the function (Ax.x+l) and its value at x (x+l). 

LISP uses a slightly modified syntax for the lambda notation. The symbol A is 

represented as the atom LAMBDA which then is followed by two lists, the first of, 

which is the argument list and the other is an expression. The example above, 

thus, is written as (LAMBDA (X) (PLUS X 1)) in LISP. 

What follows is not an exhaustive list of the basic semantic functions, but 

includes a sufficient number of them to introduce the essence of the work. We 

introduce these functions here by informal descriptions. Later on, we will 

require that more properties be added. Formal definition of these functions 

will be provided in a later section. 



(Note: While we should require all functions to check the types of their 
arguments, for the sake of simplicity, we have omitted these operations from our 
descriptions.) 

3.1 MAPP 

MAPP is a function of two arguments, f, a function, and X, a set. This function 
simply applies the function f to all of the elements of the set X, and produces a 
set consisting of the results. We call this function MAP? in order to make a 
distinction between this and the standard LISP function MAP. Notice that f must 
be a function of one argument. 

When X is a set rather than a multiset and f is a one-to-one single valued 
function, the result of MAPP will be a set with no duplicates. Otherwise, the 
result is in general a multiset. In either case, MAPP makes no attempt to detect 
or delete the duplicates of X or those in its result. 

3.2 FILTER 

FILTER takes two arguments, p, a predicate (a function with range "true, 
false",) and X, a set, and returns a set as its result. The result is the set of 
the elements of X which satisfy the predicate p. In other words, FILTER filters 
out the members of X which make p true. Notice that p must be a function of one 
argument. 

When X is a set with no duplicates, clearly, the result of FILTER will also be a 
set with no duplicates. Otherwise, the result is in general a multiset. FILTER 
never detects or eliminates duplicates of X or those of its result. 

3.3 CONCAT 

This function takes one argument, X, which must be a set of sets, and returns a 
set which is the union of the members of X. The .use of this function is 
necessitated by the fact that in VHLL a set of sets is always implicitly 
replaced by a set (which is the union of the constituent sets) immediately after 
it is conceptually formed. 

CONCAT makes no attempt to detect or delete the duplicates of its argument or 
those of its result. 



3.4 TUPLE 

This function takes an indefinite number of arguments and returns a tuple formed 
out of these arguments, in the given order. In fact, wit4h our convention of 
representing tuples as lists, this function is very similar to the standard 
function LIST in LISP. 

3.5 POS 

P0S takes two arguments, i and T, and returns the ith component of the tuple T. 
If i is not an integer in the correct range, the result of POS is undefined. 

3.6 UNQ 

UNQ takes one argument, X. It expects X to be a set and returns another set which 
is informationaily equivalent to X, but does not contain any duplicates that X 
might have. Notice that duplicates in a set carry merely superfluous 
information, i.e, the user may not conclude any more meaningful information by 
looking at X, than he may do by looking at (UNQ X), although they are different 
in extension. 

Use of UNQ is necessitated by the fact that in VHLL there are cases where the 
superfluous information conveyed by the duplicates in a set may hurt, although 
it can never be useful. 

3.7 I 

This is the one argument identity function. I returns as its result the very 
same argument that it receives. If S is a set, then the expression (MAPP I S) is 
semantically identical to S itself. 

3.8 ALW, NVR 

These two functions are in fact short hand conventions. They will be used as 
predicates which take a single argument and regardless of that argument, 
consistently return true and false, respectively. In other words, ALW is a 
function of one argument which always returns true, and NVR is a function of one 
argument which never returns true. 



If S is a set, then the expression (FILTER ALW S) is semantically identical to S 
itself, and (FILTER NVR S) always results in the empty set. 

3.9 INCR 

This function acts more like a macro rather than a real function. It takes its 
argument uninterpreted or unevaluated and increments it by 1. For example (INCR 
A) increments A by 1, actually changing the value of A, and returns the new 
value of A. Note that the argument of INCR must be a variable. 

3.10 EXISTS 

This function is similar to FILTER in that it takes two parameters, P and X, a 
predicate and a set, respectively, and traverses the set X looking for member(s) 
which make P true. The result of EXISTS is not a set, but a boolean value. The 
result will be true if there exists at least one member of X which makes P true, 
and will be false otherwise. 

3.11 ALL 

This function is analogous to EXISTS. The only difference between ALL and EXISTS 
is that ALL returns true as its result if and only if all members of the set X 
satisfy the predicate P. 

-10-



4.0 VHLL FUNCTIONS 

In this section we discuss different sorts of function application in VHLL,'and 
give formal semantic definitions for each, in the form of -generic rules. 

The power of WILL, regarded as a data base query/manipulation language, stems 
from the fact that it includes a powerful function mechanism. The basic 
concepts of this mechanism are: 

• All WILL functions are treated semantically as single argument functions. A 
WILL function with more than one argument is envisioned as a function which 
operates on an ordered list formed out of those arguments, the ordered list 
being its single argument. Notice that this is purely a semantic convention 
with no syntactic implications. 

• There are two classes of functions; those that are defined to take set 
arguments (like the built-in function AVG which returns the average of the 
members •of its argument set), and functions defined over element arguments. 
An element is either a scalar or a tuple. 

• The result of a function can be a set or an element. A function that (by 
definition) returns a set as its result will be called a multi-valued 
function. 

• The name of any association (relationship) can be used as a function mapping 
an element argument to either a set of values (a one-to-many or a 
many-to-many association), or a single element (a one-to-one or a 
many-to-one association). 

• Any function defined for an element argument can be applied to a set 
argument, provided that the types of the argument and of the set members are 
compatible. WILL defines the result of such application as the union of 
values returned by the function when applied to the individual members of 
the set. 

• The result' of applying any function to an argument for which it is not 
defined is the special value represented as UNDEF. Any function applied to 
UNDEF results in UNDEF. Although UNDEF may be a member of a set, this fact is 
never detectable, i.e. a set with or without an UNDEF as a member is the 
same. 

-11-



4.1 SINGLE-VALUED FUNCTION, ELEMENT ARGUMENT 

The simplest form of function application is to apply a single valued function 

to an argument which is not a set. If f is such a function and x is an element, 

then, remembering that f and x also represent equivalent entities in the domain 

of semantics, we have the following generic rule for formally expressing the 

meaning of such VHLL function references: 

f(x) => (f x) 
I 

RULE 1 

Notice that we semantically do distinguish between an element and a set with a 

single member, even though in WILL the latter can generally pass where an 

element is expected. 

4.2 SINGLE-VALUED FUNCTION, SET ARGUMENT 

Application of a single valued function, such as f, to a set, such as S, is 
defined to give a set consisting of the results of applications of f to each and 
every member of S. Formally, we can express this as: 

f(S) ==> (MAPP f S) 
i 

RULE 2 

4.3 MULTI-VALUED FUNCTION, ELEMENT ARGUMENT 

This case is similar to the first, which led to Rule 1, in that it is nothing 
more than application of a function to a single argument. The fact that the 
result of this application is a set is irrelevant at this point. So we can 
readily write: 

a ,

-12-



F(X) _> (F x) 
i 

RULE 3 

4.4 MULTI-VALUED FUNCTION, SET ARGUMENT 

In VHLL, application of a multi-valued function F to a set S is defined to result 
in a set which is the union of the results of applying F to the elements of S. 
This can be formally stated as: 

F(S) _> (CONCAT (MAPP F S)) 
I I 

RULE 4 

Notice that (MAPP F S) temporarily results in a set of sets, each of which is the 
result of application of F to one of the members of S. The function CONCAT, then 
immediately flattens this set of sets out into a simple set. 

When S is a singleton set, the result of (NAPP F S) will be a set whose only 
member is the set returned by F as the result of its application on the only 
member of S. The CONCAT, then, unfolds this set of a single set into a set. In 
other words, if we call the sole member of S "e" the. two VHLL function references 
F(e) and F(S) will yield identical results. 

-13-



5.0 VHLL EXPRESSIONS 

In this section we give rules and guidelines for the definition of the semantics 
of VHLL expressions, and provide some examples of their use. 

5.1 SIMPLE WHERE EXPRESSION 

The intent of a simple where expression is to select some data elements which 
satisfy a particular condition. The result of a where expression is always a 
set. The generic form of a simple where expression in VHLL is: 

?x WHERE where-clause 

The ?x is a local dummy variable which must appear in the where-clause as a free 
variable. We refer to it as the search variable of the where expression. The 
where-clause provides two kinds of information: 

• It indicates a set from which values for the search variable will be drawn. 
This set is called the search domain. 

• It gives the condition under which any search variable value (any member of 
the search domain) should be included in the result of the where expression. 
We will call this the search condition. 

Once the search variable, search domain, and search condition of a where 
expression are determined, it is simple to formally express its semantics using 
our notation. There is'  generally a choice involved in the selection of a search 
domain. If the purpose of the semantic definition were restricted to the 
expression of meaning alone, then a general rule for the selection could be 
specified. However, in the context of the second implementation-related 
purpose, the selection should be made based on storage-organization (target 
machine) related considerations. The choice of search domain in our examples is 
somewhat arbitrary. Observe that, as suggested by the examples below, once the 
search domain is selected the search condition will become obvious; almost 
everything else in the where-clause will be the search condition. 

We will maintain the VHLL search variable names, e.g. ?x above, in our rules and 
in the examples. However, it should be clear that none of the locally-bound 
variable names, such as those of search variables, are significant; they may be 
changed consistently, as long as this change does not cause any ambiguity 
through misuse of other variable names. 

We can formally express the meaning of a simple where expression as: 

-14-



?x WHERE where-clause 
_> (FILTER (LAMBDA (?x) (s-cond)) s-domain) 

 i 

RULE 5 

The s-cond and s-domain are the appropriate representations of the search 
condition and search domain components of the where-clause. The filter 
predicate (LAMBDA (?x) (s-cond)) is a single argument function which returns a 
truth value. FILTER takes every member of the set described by s-domain and 
pumps it through the filter predicate. Any member which makes the predicate true 
will be included in the result set. If a search condition is absent from the 
where clause, the appropriate predicate for FILTER would be the ALW function. 
Obviously, FILTER would then become superfluous, but for the time being, we 
refrain from replacing such an expression with its equivalent, i.e. the search 
domain. 

• Example 1 

?emp WHERE ?emp IS_IN EXEMPT AND SALARY(?emp)>10K 

This is a very simple WILL where expression. The search variable is ?x, we 
take the search domain to be the set EXEMPT, and the search condition is 
then SALARY(?emp)>10K. Using the generic rule of the where expressions, we 
can formally present the semantics of this expression as: 

(FILTER 
(LAMBDA (?emp) (GT (SALARY ?emp) 10K)) 
EXEMPT ) 

Here we have assumed that EXEMPT is the counterpart set for EXEMPT in the 
VHLL expression, and that SALARY is a single valued function whose semantic 
counterpart (also named SALARY) exists. 

The second line of this expression, (LAMBDA  ), is the filter predicate, 
and will be true when the returned result of the function SALARY, applied to 
the predicate's argument, is greater than 10K. Thus, the result will be the 
set of EXEMPT employees who earn more than 10K. 

The selection of EXEMPT as the search domain is arbitrary; other examples 
will illustrate additional possibilities. Also, we assume for purposes of 
this example that EXEMPT is a subset of the domain of function SALARY. 
Provisions needed when this is not the case are discussed further on. 
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• Example 2 

?emp WHERE ?emp IS_IN EXEMPT 

Here again the search variable is ?emp and the search domain is EXEMPT. The 
search condition, however, is not given, and as mentioned earlier, this 
means that the result of the where expression should be the same as the 
search domain EXEMPT. Using our rules and remembering that in case of 
absence, the search condition defaults to predicate ALW, we. can formally 
express the semantics of this VHLL expression as: 

(FILTER ALW EXEMPT) 

Operationally, this means that all elements of EXEMPT are pumped through the 
predicate ALW, which indiscriminately returns true. Each of the members of 
EXEMPT which satisfy the filter predicate are included in the result set by 
FILTER. Hence, the result set is nothing more (or less) than EXEMPT. 

Example 3 

?emp WHERE SALARY(?emp)>10K 

In this example, the search domain selected is the domain of the function 
SALARY, which we will designate as Dsal. So the semantics of this VHLL 
expression can formally be written as: 

(FILTER 
(LAMBDA (?emp) (GT (SALARY ?emp) 10K)) 
Dsal ) 

This means that every member of the domain of the function SALARY will be 
filtered through the filter predicate, which as we saw earlier, returns true 
for all those ?emp's whose SALARY is greater than 10K. 

Notice the implicit assumption that SALARY is a single valued function and 
that its semantic counterpart exists. 

• Example 4 

?emp WHERE ?emp IS_IN EXEMPT AND SALARY(?emp)>l0K 

This is in fact the first example, but we are revisiting it to discuss other 
alternatives for search domain selection. In general, an adequate search 
domain must include at least all objects in the data base which might 
satisfy the where expression. If we assume that there is no subset/superset 
relationship between EXEMPT and the domain of SALARY, then the smallest 
adequate search domain for this case is the intersection of the sets Dsal 
and EXEMPT. If this were the chosen domain, we would write: 
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(FILTER 
(LAMBDA (?emp) (GT (SALARY ?emp) 10K)) 
(INTSCT Dsal EXEMPT) ) 

In general, any superset of the smallest adequate search domain may be 
chosen in its place. For example, if both of the sets Dsal and EXEMPT are 
subsets of a larger set, say EMP, then EMP might be chosen as the search 
domain as well. This may cause SALARY to be applied to an element for which 
it is not defined. According to rules for function application discussed in 
section 4, the result of a function (like SALARY) will be the special value 
UNDEF for any value (member of search domain,) say z, not in its domain. 
This UNDEF will get rippled through the predicate, causing FILTER to not 
include z in its result. 

• Example 5 

?emp WHERE SALARY(?emp)>SALARY(HAS_MGR(?emp)) 

Here the search variable is ?emp and the search condition is clearly 
everything after the keyword WHERE. Formally we can express the meaning of 
the above expression as: 

(FILTER 
(LAMBDA (Temp) (GT 

(SALARY ?emp) 
(SALARY (HAS_MGR ?emp)) )) 

Dsal ) 

We have assumed here that HAS_MGR has a semantic counterpart and that it is 
a single valued function. 

The above formal expression simply considers all employees who have a 
salary, and pumps them through the filter function. The result will be the 
set of all such employees whose salary is greater than that of their 
manager. 

• Example 6 

?emp WHERE SALARY(?emp)>SALARY(HAS_MGR(?emp)) 
AND ?emp IS_IN EXEMPT 

Notice the similarity between this and the previous example. Without more 
explanation, we can write: 

(FILTER 
(LAMBDA (?emp) (GT 

(SALARY ?emp) 
(SALARY (HAS_MGR ?emp)) )) 

EXEMPT ) 
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Example 7 

?part WHERE SUPPLIES: ('PARTS_INC',?part) 

As discussed earlier, if we can confirm that a counterpart function for 

SUPPLIES actually exists in the domain of semantics, then this expression 

can be readily written as: 

(FILTER 
ALW 
(SUPPLIES 'PARTS_INC') ) 

But the purpose of this example is to show how a VHLL function reference 

with no counterpart function can be handled. The following expression 

represents the meaning of this example: 

(FILTER 
ALW 
(MAPP 
(LAMBDA (u) (POS 2 u)) 
(FILTER 
(LAMBDA (t) (EQ (POS 1 t) 'PARTS_INC')) 

SUPPLIES ) ) ) 

Notice that the same result would be obtained if we were dealing with the 

VHLL expression: 

?part WHERE ?part IS_IN SUPPLIES('PARTS_INC') 

provided that no counterpart function existed for SUPPLIES. Conversely, 

with the assumption that the counterpart function SUPPLIES exists, both VHLL 

expressions will result in the first expression above. 

• Example 8 

?part WHERE SUPPLIES: ('PARTS_INC' ,?part) 
AND COST(?part)>5 

Again, we assume that no counterpart function exists for SUPPLIES. This is 
clearly very similar to the previous example, the difference being that here 
the search condition is specified. 

(FILTER 
(LAMBDA (?part) (CT (COST ?part) 5)) 
(MAPP 
(LAMBDA (u) (POS 2 u)) 
(FILTER 
(LAMBDA (t) (EQ (P05 1 t) 'PARTS_INC')) 
SUPPLIES ) ) ) 
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Notice the implicit assumptions about COST. 

5.2 MORE COMPLEX WHERE EXPRESSIONS 

In more complex where expressions the word WHERE is preceded by a term more 

complex than a reference to a single dummy variable. The term can include more 

than one dummy variable and may call for additional processing on each filtered 

value or group of values (one for each dummy variable). In the domain of 

semantics, once the where-clause results are obtained in a set, further 

processing can be performed on them by MAPPing the appropriate function on that 

set. For example, if the expression to the left of the WHERE involves 

application of a function to a single variable, we can use Rule 6. 

g(?x) WHERE where-clause 
=> (MAPP 

g 
(FILTER (LAMBDA (?x) (s-cond)) s-domain) ) 

RULE 6 

Here, again, the s-cond and S-domain are the appropriate representations of the 

search condition and search domain components of the where-clause. 

• Example 9 

SOC_SEC(?emp) WHERE ?emp IS_IN EXEMPT AND SALARY(?emp)>lOK 

We can simply follow the rules and derive the formal meaning of this 

expression as: 

(MAPP 
SOC_SEC 
(FILTER 
(LAMBDA (?emp) (GT (SALARY ?emp) 10K)) 
EXEMPT ) ) 

Of course, we have assumed that SOC_SEC and SALARY are single valued 

functions with counterparts. 
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• Example 10 

<?emp,?mgr> WHERE SALARY(?emp)>SALARY(?mgr) 
AND HAS_MGR:(?emp,?mgr) 

Here we assume that a counterpart function exists for HAS_NCR. We 
assume that this function is a single valued function. The next 
considers the case where either of these assumptions does not hold. 

(MAPP 
(LAMBDA (e) (TUPLE a (HAS_MGR e))) 
(FILTER 
(LAMBDA (?emp) 
(CT (SALARY ?emp) (SALARY (HAS_MGR ?emp))) ) 

EMP ) ) 

further 
example 

In effect, we have taken the HAS_MGR:(?emp,?mgr) phrase to be identical to 

?mgr=HAS_MGR(?emp) and then replaced the local variable ?mgr with its value. 

Notice also the implicit assumption that the domain EMP is a superset of the 
domains of the two functions SALARY and HAS_NGR. 

• Example 11 

Here we 
result, 
HAS_MGR. 
HAS_MGR, 
variables 
likewise, 

<?emp,?mgr> WHERE SALARY(?emp)>SALARY(?mgr) 
AND HAS_MGR:(?emp,?mgr) 

assume that, no counterpart function exists for HAS_MGR. As a 
the HAS_MGR:(?emp,?mgr) is interpreted as <?emp,?mgr> IS_IN 
By creating a new search variable, say t, on the search domain 
we can derive sthe relationships between the original search 
and the new one. Clearly, ?emp is identical to (POS 1 t) and, 
?mgr is identical to (POS 2. t). Hence we derive: 

• (FILTER 
(LAMBDA (t) 
(CT 
(SALARY (P0S 1 t)) 
(SALARY (POS 2 t)) ) ) 

HAS_MGR ) 

Example 12 

?emp WHERE EXISTS (?mgr WHERE SALARY(?emp)>SALARY(?mgr) 
AND ?mgr IS_IN HAS_MGR(EMP)) 

Given that the variable ?emp is to range over the domain of the function 
SALARY, Dsal, and assuming that a counterpart function for HAS_MGR exists, 
we may write: 
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(FILTER 
(LAMBDA (?emp) 
(EXISTS 
(LAMBDA (?mgr) (GT (SALARY ?emp) (SALARY ?mgr))) 
(MAPP HASifGR EMP) ) ) 

Dsal ) 

In the above expression, the filter predicate forms the set of all managers 
by MAPPing the function HAS_MGR onto the set EMP, and then searches the 
resulting set for a ?mgr whose SALARY is less than the SALARY of a given 
?emp. FILTER simply loops over the set Dsal, selecting the ?emp's which 
make the filter predicate true. 

-21-



6.0 SEMANTIC FUNCTIONS (REVISITED) 

Mechanical application of the rules discussed in sections 4 and 5 will generally 

yield long, "complex" semantic expressions for most VHLL expressions. (The 

"complexity" is in fact due to the relatively large number of functions 

involved, which generally are applied to relatively simple arguments and 

potentially large sets.) These expressions can often be transformed into 

equivalent "simpler" expressions which are computationally less expensive. 

We first observe that, from an operational point of view, it is less expensive 

to traverse a set once, applying n functions to each of its members, than to 

traverse the set (or ones of equivalent length) n times, each time applying one 

of the functions. 

A second observation is that the amount of intermediate result which has to be 

held affects the cost of computation. An intermediate result is any result 

which is produced by a part of an expression and is destined to be used in 

another part of the same expression. In a set oriented language, often these 

intermediate results are large sets and any tricks that can be used to avoid the 

necessity of their formation would result in a significant cost reduction. 

We will see that the first observation will lead to the equivalent of "loop 

paralleling" in classical optimization; even though in our case the "loops" are 

very much implicit and imbedded within the functions. The second (and first) 

observation leads to another simplification guideline: the equivalent of "loop 

jamming" in classical optimization, i.e. composition of functions. 

The rest of this section develops some formalism that can be used to handle 
these two optimization techniques in particular. We intend to apply this 
formalism to "simplify" the expressions we obtain from our operational semantics 
system. To be able to do so we will require that the semantic functions 
introduced in section 3 display some specific structural properties. We will 
discuss these properties, and then give formal definitions for our semantic 
functions satisfying both the required functional, and structural properties. 

This method is inspired by the work of W. Burge in [2], but there are differences 
(other than notation) between our functions and those in [2]. One difference is 
due to our use of currying which permits a more explicit notation than in [2]. 
The major difference, however, is that we introduce an additional argument, C, 
for the looping function L, which is the termination condition (see below). 
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6.1 LOOPING FUNCTION 

Any function that works on a set contains, somewhere in its logic, a mechanism 
which enables it to loop over the members of that set. If we had a generalized 
looping function which we could use to define other set manipulator functions, 
then, intuitively, the latter would be structurally more homogeneous and thus 
more susceptible to the loop paralleling and loop jamming transformations 
discussed above. The following is a definition for such a generalized looping 
-function. This definition uses the program feature of LISP, i.e., it uses 
explicit control statements, for practical reasons; this point, however, is 
irrelevant and a recursive functional definition can replace the present one. 

(DE L (C A G X) 
(PROS (Y Z) 
(SETQ Y A) 
(SETQ Z X) 

LOOP (COND 
( (OR (C Y) (NULL Z)) (RETURN 
(T 
(SEQ 
(SETQ Y ( (G (CAR Z)) Y)) 
(SETQ Z (CDR Z)) ) ) ) 

(GO LOOP) ) ) 

Y)) 

DE is a function which we shall use to define other functions with. It takes 
three arguments, a name, an argument list, and a function body. Referring to the 
definition above, L is a function of four arguments, C, A, G, and X. X is the 
set (a list in LISP) over whose elements L is to loop. G is a functional (a 
function whose result is yet another function) and A is an initial value for the 
result. L loops over X and applies G to each of its members. The resulting 
function is then applied to the partial result, accumulated in Y, whose initial 
value is A. The loop ends when either all members of X are considered or when 
predicate C becomes true for Y, the partial result. For reasons which will 
become clear later, some limitations must be put on C. Essentially we do not 
permit C to loop over the partial result, if in fact the latter is a set. 

Notice that both C and G, as well as the result of G, must be functions of only 
one argument. This restriction, particularly on G, is very important and may 
make some function definitions more difficult. To overcome this difficulty we 
use "currying", discussed in the next section. 

6.2 CURRYING 

Any function of more than one argument can always be defined using a sequence of 
single argument functionals. This latter form is called the curried form of the 
function. As an example, consider the normal addition operation on two integers 
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represented by the function PLUS. Thus (PLUS i j) returns the sum of i and j, 

two integers. Now, assume we have the infinite family of single argument 

functions ADD1, ADD2, ..., ADDn available with a one to one correspondence to 
the set of integers. Each ADD! takes only one integer argument and increments 

that argument by i. It is easy to see that (PLUS i j) is always equal to (ADD! 

J), i.e. for all i we can find a member of the ADD family of functions which 

satisfies the equality. (We have conveniently named the members of this family 

such that the ! itself designates the correct member.) The curried form of PLUS 

now can be understood as a function which using (may be implicitly and very 

indirectly) the ADD family of functions, expresses the same intention as that of 
PLUS. 

The difference between PLUS and its curried form is that PLUS maps from the 

domain INTEGER X INTEGER to the codomain (range) INTEGER, whereas its curried 

form maps from the domain of INTEGERs to the codomain of the ADD family of 

functions, each member of which is, in itself, a mapping from INTEGERS to 
INTEGERS. Thus: 

PLUS: INTEGER X INTEGER ---> INTEGER 

Curried form of PLUS: INTEGER ---> (INTEGER ---> INTEGER) 
or simply: INTEGER ---> INTEGER ---> INTEGER 

To restate more formally, we know that a function f with range D, which takes n 

arguments from domains D1, D2, ..., Dn, respectively, can be defined as the 
mapping: 

f: D1 X D2 X ... X.Dn ---> D 

There always exists a compatible function g defined as: 

g: D1 ---> D2 ---> ... ---> Dn ---> D 

(where right-nested parenthesis are deleted for simplicity) with the same 

intention as f; that is: 

(f dl,d2, ...,dn) = ((...((g dl) d2) ...) dn) 

for all dl, d2, ..., do in D1, D2, ..., Dn, respectively. The function g is 
called the curried form of f, after professor H. B. Curry of Penn State [3,6]. 
The difference between f and g is that f is a mapping from a domain which is the 
cartesian product of D1 through Dn, to the range D. On the other hand, g is a 
mapping from domain D1 to a range which itself is a set of mappings. Each 
particular member of this range in turn is a mapping from domain D2 to yet 
another set of mappings, etc. The final range of these series of mappings is D. 

Now, we define a new function called CURRY which transforms a function to its 
equivalent curried form. CURRY takes a function name and a list of dummy 
arguments and returns the curried form of that function. As an example consider 
PLUS, a function of two arguments. The expression: 
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(CURRY PLUS A B) 

is the curried form of this function, i.e., a functional which when applied 
twice gives the sum of its two arguments. In the above expression, A and B are 
merely dummy arguments. Assuming that CPLUS is defined to be the curried form 
of PLUS, as the above expression, then we have: 

((CPLUS 6) 8) _ (PLUS 6 8) = 14 

Notice the requirement that, in case of PLUS, both arguments must be available 
before the function is applied; a restriction that is removed in case of CPLUS. 

6.3 FUNCTIONS BASED ON L 

We have, to this point, defined a looping function L which can be used to give a 
homogeneous structure to the definition of set manipulator functions. We have 
also described "currying", for transforming functions to a homogeneous single 
argument form. We will now illustrate how L is actually used to define other 
functions. Consider a function SUM which is to take a set (list) of numbers as 
its argument and is to return their sum as its result. We can define this 
function as: 

(DE SUM (X,) 
(L NVR 0 (CURRY PLUS A B) X) ) 

Here L loops over the set X and will not terminate unless the entire set is 
considered (due to NVR.) The initial value for the (partial) result is 0 and 
(CURRY PLUS A B) keeps adding the members of X to this partial result until the 
loop completes. 

As a second example, consider COUNT, a close relative of SUM, which is supposed 
to count the members of its argument set (list). COUNT is very much like SUM, 
the only difference being that rather than adding the very member of the set, 
the function in COUNT's definition should add 1 to the partial result in lieu of 
each member. This can be simply achieved by forming a composite function out of 
the function used in the definition of SUM and the constant function 1, i.e. 
(LAMBDA (Y) 1) which indiscriminately returns 1 when applied to any argument. 
Thus we have: 

(DE COUNT (X) 
(L NVR 0 (COMB (CURRY PLUS A B) (LAMBDA (Y) 1)) X) ) 

M 

COMB is the function composition operator, i.e., if h and k are single argument 
functions, then (COMB h k) is our equivalent of the composite function h•k. 
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6.4 FORMAL DEFINITION OF BASIC SEMANTIC FUNCTIONS 

We are now ready to present formal definitions for some of the basic semantic 

functions introduced in section 3. For reasons which will become clear later 

when we discuss a certain class of optimization in section 7, we prefer to 
define a more generalized version for some of these functions first, and then 

use these 
auxiliary 

functions to define the original ones as their special 
cases. 

6.4.1 EXISTS 

The following definition for the function EXISTS (of section 3.10) illustrates 

how we may take advantage of the termination predicate C in L. Observe that as 
soon as a member is found in X which satisfies P, there is no reason to continue 
the loop. 

(DE EXISTS (P X) 
(L I NIL (COMB (CURRY OR A B) P) X) ) 

Because the terminating predicate is I, the loop will terminate immediately 
after the (partial) result, whose initial value is NIL, becomes true. The 
composite function (COMB (CURRY OR A B) P) computes (P'x),:a boolean, for every 
x member of X, and this will be then ORed to the partial result. The first x 
encountered during the traversal of X which makes P true, will naturally make 
the partial result true too. Consequently, the terminating predicate, I, will 
become true for the partial result and L will terminate. 

6.4.2 ALL 

The function ALL need not continue with examination of the rest of the members 
of X, after it finds the first member which makes P false. Thus we may define 
ALL in a manner analogous to EXISTS as: 

(DE ALL (P X) 
(L NOT T (COMB (CURRY AND A B) P) X) ) 
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6.4.3 MAPP 

The first auxiliary function we introduce is CHAP, a generalized version of 
MAP?. 

(DE CMAP (C A G F X) 
(L C A (COMB G F) X) ) 

The intention of CHAP should be clear; it keeps applying the composite function 
G•F to the members of set X, applying the resulting function to the partial 
result (whose initial value is A) each time, until either condition C becomes 
true for the partial result or all members of X are considered. 

It is a trivial task now to define MAP? in terms of CHAP: 

(DE MAPP (F X) 
(CHAP NVR NIL INS F X) ) 

The function INS is the curried form of a function which inserts an element (1st 
argument) into a set (2nd argument.) For the time being, since the ordering of 
set members is not an issue, this latter function can be the standard LISP 
function CONS. Thus INS can be equivalent to: 

(CURRY CONS A B) 

6.4.4 FILTER 

The generalized form for FILTER is defined as: 

(DE CFILTER (C A G F X) 
(L C A ( (FILTH G) F) X) ) 

The function FILTH plays a role very much similar to the composition operator in 
the definition of CHAP. FILTH is in fact the curried form of a function which 
implements the notion of conditional selection of the members of X. It is 
easier to first consider its uncurried version FLT, defined below: 

(DE FLT (G P X Y) 
(COND 
( (P X) ( (G X) Y)) 
(T Y) ) ) 
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FLT takes four arguments, G, P, X, and Y, which are, respectively, a function of 

two arguments in its curried form, a predicate, a new set member, and a partial 

result. The result of FLT will be Y, the partial result, if the member X does 

not satisfy the predicate P. If (P X) is true however, the result will be that 

returned by applying G to X and Y. FILTH is simply the curried form of FLT. 

Notice that ( (FILTH G) F) in the definition of CFILTER is itself a curried 

function of two arguments, as it should be; the remaining two arguments will be 

supplied to this function by L. 

CFILTER, in essence, loops over the members of X, terminating if the partial 

result satisfies condition C, and modifies the partial result using function G 

only when the member under consideration makes predicate F true. 

Our FILTER function is only a special case of CFILTER where the loop is to run to 

its completion, the initial value for the partial result is NIL, and function G 

is INS. Thus: 

(DE FILTER (P X) 
(CFILTER NVR NIL INS P X) ) 

6.4.5 CONCAT 

Another function we used earlier is CONCAT, whose generalized version CCONCAT, 

can be defined as: 

(DE. CCONCAT (C A G X) 
(L C A ( (CONCH C) G) X) ) 

Function CONCH is the curried form of a variant of L named CNCH. The only 

difference between L and CNCH, as can be seen, is the order of their arguments. 

(DE CNCH (C G X A) (L C A G X)) 

Our CONCAT function is a simple case of CCONCAT, where the terminating condition 

is NVR, the initial value is NIL, and the function to be applied is INS: 

(DE CONCAT (X) 
(CCONCAT NVR NIL INS X) ) 
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7.0 CODE IMPROVEMENTS 

Suppose that somehow we obtained the expression below as the meaning of a 
peculiar WILL expression which evaluates the average of a set of integers, say 
INTS: 

(QUOTIENT (SUM INTS) (COUNT INTS)) 

There is another form for this expression which is computationally less 
expensive. We need not apply the two functions in any particular sequential 
order; hence we need not loop over the set INTS twice. We may instead define a 
function which, when applied to INTS, would produce a list of the two values 
yielded by SUM and COUNT. We can then extract the individual results and apply 
the function QUOTIENT (or anything else) to them. This is an example of what is 
classically called "loop paralleling". Notice that we may be able to parallel 
more than two functions (loops) in a complex expression. Such transformations 
are obviously most important where the size of the "input" set is such that it 
must be kept on secondary storage. 

Now suppose we have an expression of the form: 

(f (g X)) 

where f and g are two functions and X is a set. If both f and g are such that 
they somehow traverse the entire set that is passed to them as their arguments, 
and the result of g itself is a set produced during the traversal, then again we 
can simplify this expression. As it is, this expression applies g to the set X 
and then applies f to the resulting set, thus requiring two function 
applications (two loops), and operationally speaking, also builds a 
(potentially large) set as an intermediate result. We can transform the above 
expression to one which applies an equivalent of the composite function f•g to 
the set X directly. Such expression involves only one function application and 
does not build an intermediate result (not a set intermediate result anyway). 
This transformation is called jamming (of loops or functions). The composition 
operator (•) will be represented by the function COMB, as noted. above. 

To apply such transformations, a process would scan through the semantic 
expressions looking for specific patterns, and replace such patterns with more 
efficient equivalents. In this section we discuss the kinds of rules needed. 
The material in this section is based on work presented in [2] which is more 
detailed .in some respects. Our termination condition (the first argument of 
looping function L) has advantages over using the "exit function" of [2] in that 
when the exit function is used, it restricts use of jamming and paralleling 
rules (see below). The way that paralleling is handled is quite different here 
due to presence of a termination condition. 
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7.1 JAMMING 

The function L, presented earlier, has the property that it can "absorb" other 
set manipulator functions which can be expressed in terms of L [2]. The way each 
such function is absorbed depends on the particular function involved, and is 
specified by a "jamming rule". 

Each jamming rule permits an SMSP (set-manipulating set-producing) function to 
be absorbed by a preceding L, i.e., if F is an SMSP function, then a sequence 
like: 

(L.0 AG (F ... S ...)), 

can be transformed using the jamming rule associated with F. In the above 
expression F traverses the set S and somehow produces a second set. This latter 
set is then in turn traversed by L. The jamming rule associated with F permits 
the same result to be obtained through only one traversal of S, in its worst 
case. The nature of the rule depends on the intention of F. 

We have defined the basic semantic functions in such a way as to allow the 
expression of jamming rules. For example, we have defined the functions MAPP 
and CHAP such that a sequence like: 

(L C A G (NAPP F S)) 

is equivalent to: 

(CHAP C A G F S) 

To verify this, consider the original expression. It first builds up a set out 
of the results of F applied to the members of S, and then loops over this set, 
applying G to its members, terminating either when the whole set has been 
traversed, or when the partial result satisfies C. The exact same thing happens 
in case of CHAP, except that, rather than applying F to the entire set first and 
building an intermediate set, CHAP simply traverses S once and applies G•F to 
its members. We use this equivalence as the jamming rule for MAPP. Note that 
CHAP, as well as other functions like it which are not absorbed by L, can 
themselves be replaced by their definitions which, in our case, will be in terms 
of L. This guarantees jamming of a sequence of jammable functions. For 
example: 
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(MAPP F1 (MAPP 12 (MAPP F3 5))) 

can be transformed: 

by the definition of MAPP, into: 
(CMAP NVR NIL INS 11. (MAPP F2 (MAPP 13 S))) 

by the definition of CMAP, into: 
(L NVR NIL (COMB INS Fl) (MAPP F2 (MAPP F 3 S))) 

by the jamming rule for MAPP, into: 
(CMAP NVR NIL (COMB INS F1) F2 (MAPP F3 S)) 

by the definition of CMAPP, into: 
(L NVR NIL (COMB (COMB INS 11) F2) (MAPP F3 S)) 

by the jamming rule for MAPP, into: 
(CMAP NVR NIL (COMB (COMB INS Fl) F2) F3 S) 

and finally, by the definition of CMAP, into: 
(L NVR NIL (COMB (COMB (COMB INS F1) F2) F3) S) 

$ 

The other SMSP functions which we used are FILTER, CONCAT, and APEND. The 
jamming rule for FILTER specifies that the sequence: 

can be replaced by: 

(L C A G (FILTER P S)) 

(CFILTER C A G P S) 

The validity of this rule can be verified by checking the definition of CFILTER. 
Notice that with these two rules we are able to convert any sequence of MAPP and 
FILTER, applied in a series, to a single application of L. 

The rules for jamming of CONCAT and APEND given below can be verified similarly. 
For CONCAT we have 

(L C A G (CONCAT S)) 

is replaceable by 

(CCONCAT C A G S), 

and for APEND, we have 

(L C A G (APEND Si S2)) 

can be replaced by 

-31-



(CAPEND C A G Si 82). 

7.2 PARALLELING 

Whenever a set is traversed more than once to produce several results, we can 

parallel the production of these results into a single traversal of the set. 

Assume that we have the following two applications of L somewhere in an 

expression: 

(L C1 Al G1 X) ... (L C2 A2 G2 X) 

Provided that the two references to L are independent, we may wish to replace 

the above expression with the following sequence: 

(SETQ TEMP (L C A G X)) 
(SETQ M (EX1 TEMP)) 
(SETQ N (EX2 TEMP)) 

where TEMP, M, and N are temporary unique identifiers and SETQ is the standard 
LISP's assignment operator which assigns the value of its second argument to the 
first. The two references to L are independent if C2, A2, and G2 are in no way 

dependent on the result of the first L, and the expression does not modify X (at 
least not in between the two L's.) 

The latter sequence replaces the two references to L by a single reference which 
produces a list that includes the original results. EX1 and EX2 are two 
functions which extract these results from the list returned by the parallel L. 
The exact form of EX1 and EX2 depends on the exact format of the result of the 
parallel L and will be given later. These extracted results are then assigned 
to (unique) variables which substitute their corresponding references to L in 
the original expression. Notice that this last expression sequence involves 
only one loop over the set X, and that if there is yet another reference to L 
involving X in the expression, again these two could be paralleled in a similar 
fashion. Our target now is to determine the form of the functions C and G, and 
also that of A. We already know that C must be a single argument function, G 
must be a function of two arguments in curried form, and A must be an initial 
value having the same format as the (partial) result. We also know that the 
intention of C is to terminate L when both Cl and C2 become true for their 
corresponding partial results. 

The effect of G must be equivalent to taking the partial result of the parallel 
L, extracting each of the partial results expected by 01 and 02, applying 01 and 
02 to the given member of the set and then to their corresponding partial 
results, and, finally, forming the new composite partial result by combining the 
two new partial results returned by 01 and 02. 
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Observe that the parallel L can, in general, run beyond the point where either 
of the two conditions Cl and C2 become true for their corresponding partial 
results., We may wish to prevent further application of G1 or G2 after the 
corresponding Ci becomes true, even though it is not necessary to do so. The 
following function will be used to implement this conditional prevention: 

f 

(DE GF (C G X Y) 
(COND 
( (C Y) (LIST T Y)) 
(T (LIST NIL ((G X) Y))) ) ) 

GF takes a predicate, C, a two argument curried function, G, a partial result, 
Y, and a set member X, and returns a result, say Z, which is a list that includes 
a new partial result. GF first tests to see if the partial result Y satisfies 
the predicate C. If so, then the new partial result will be the same as Y. 
Otherwise, the new partial result is obtained by applying G to X and then to Y. 
The returned result of GF, Z, is a two element list whose second element is the 
new partial result. The first element in Z is a truth value indicating whether 
(C Y) was true or false. 

Using GF and JY, which will be discussed below, GP1 implements the intention of 
G (but, of course, is not in curried form). 

(DE GP1 (Cl G1 C2 G2 X Y) 
(JY 
(GF Cl G1 X (EX1 Y)) 
(GF C2 G2 X (EX2 Y)) ) ) 

Given the two predicates Cl and C2, functions G1 and G2, the set member X, and 
the composite partial result Y, GP1 extracts each of the individual partial 
results using functions EX1 and EX2. It then passes them together with their 
corresponding Ci and Gi, to GF to obtain the two new partial results. GP1 then 
uses JY to combine these results into a new composite partial result for the 
parallel L. 

The format of the arguments of JY is dictated by GF. The format of the result of 
JY dictates the format of the (partial) result of the parallel L, and thus, 
determines the form of A as well as the two functions EXl and EX2, and also that 
of the predicate C. 

(DE JY (Z1 Z2) 
(LIST 
(AND (CAR Z1) (CAR Z2)) 
(CADR Z1) 
(CADR Z2) ) ) 

With the above definition, JY returns a list of three elements, the second and 
third of which are the two partial results and the first being a conjunction of 
two truth values.. Because these truth values (computed by GF) each determine 
whether their corresponding Ci is satisfied, the first element in the result of 
JY determines whether the parallel L should halt. 
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C then, simply needs to examine the first element of the partial result of the 

parallel L; C is thus identical to CAR. 

EX1 and EX2, similarly, merely need to extract the second and,the third elements 

of the partial result, and are identical to LISP functions CADR and CADDR, 

respectively. 

The initial value for the partial result of the parallel L, A, is to combine the 

two initial values Al and A2, together with a truth value of false, into a list. 

A is thus (LIST NIL Al A2). 

Assuming that GP is the curried form of G1'1, G is exactly GP applied to the first 

four arguments, i.e., ( ( ( (GP Cl) 01) C2) 02). The parallel L is thus 

composed as: 

(L 
CAR 
(LIST NIL Al A2) 
((((GP Cl) 01) C2) 02) 
X) 

7.3 OTHER OPTIMIZATIONS 

In addition to the two types of improvements discussed in the previous sections, 

there are other important transformations that must be considered. Some, such as 

constant folding, removal of common subexpressions, and relocation of costly 

invariant expressions to the outside of loops are orthogonal to the ones 

discussed above. There are other issues directly related to optimizations of 

the prior sections. Two of these are the problem of transformation ordering and 

the necessity for transformation criteria based on the information contents of 

the data base. To illustrate these issues, consider Example 12 of section 5.2 

again. The expression: 

(FILTER 
(LAMBDA (?emp) 
(EXISTS 
(LAMBDA (?mgr) (GT (SALARY ?emp) (SALARY ?mgr))) 
(MAPP HAS_MGR EMP) ) ) 

Dsal ), 

derived as the meaning of: 

?emp WHERE EXISTS(?mgr WHERE SALARY(?emp)>SALARY(?mgr) 
AND ?mgr IS_IN HAS_MGR(EMP)) 

does serve the purpose of formal semantics derivation. But we would like to 
convert it to a more efficient form for execution. It is clear that the FILTER 
will be replaced by its definition and implies one occurrence of the looping 

s 
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function L. The filter predicate itself involves a reference to MAP? and one to 
EXISTS, both of which are defined in terms of L. For simplicity, let us call the 
predicate (first argument) of EXISTS, P. The EXISTS and MAPP can be jammed as 
follows. 

By replacing the EXISTS with its definition: 
(L I NIL (COMB (CURRY OR A B) P) (MAP? HASJIGR EM?)) 

By the jamming rule for MAP?: 
(CMAP I NIL (COMB (CURRY OR A B) P) HAS_MGR EM?) 

By the definition of CMAP: 
(L 

I 
NIL 
(COMB (COMB (CURRY OR A B) P) HAS_MGR) 
EM? ) 

The whole expression can then be written as: 

(FILTER 
(LAMBDA (?emp) 
(L 
I 
NIL 
(COMB (COMB (CURRY OR A B) P) HAS JIGR) 
EM? ) ) 

Dsal ), 

where P, as mentioned above, is a short-hand for 
(LAMBDA (?mgr) (GT (SALARY ?emp) (SALARY ?mgr))) and FILTER itself can be 
rewritten in terms of L in the obvious fashion. 

This result is more efficient because it involves one less reference to L, i.e., 
one less loop, than the original one. However, it is possible to derive another 
expression by application of a rule for relocation of costly invariant 
expression to the outside of the FILTER "loop": 

(SETQ X (UNQ (MAP? HAS~iGR EMP))) 
(FILTER 

(LAMBDA (?emp) 
(EXISTS 

(LAMBDA (?mgr) (GT (SALARY ?emp) (SALARY ?mgr))) 
X) ) 

Dsal ) 

This last expression could be yet more efficient, even though it involves three 
references to L and creation of an intermediate result set. If there are 
roughly as many managers as there are employees, then the previous derivation, 
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with two references to L,. is more efficient. But, if there are much fewer 
managers than employees, then the above expression will be preferable, 
especially if Dsal is large, because a much smaller set (of managers) will be 
traversed for each ?emp member of Dsal, and the saving can easily offset the 
overhead o£ creating the intermediate result set (X). 

This illustrates the significance of the order in. which transformation rules are 
applied to optimize an expression. One can see that application of jamming 
rules can hinder applicability of a relocation rule, which (depending on the 
data base contents) could result in a more efficient expression. It also 
illustrates the necessity for transformation rules sensitive, not only to the 
semantics of the program, but also to those characteristics of the data base 
definition and instantiations which influence the statistical attributes of the 
data base contents. 

A third, unavoidable issue is that some optimizations are even less easily 
classifiable. These seem to involve additional understanding and 
reconstruction of program "intent", as opposed to mere semantics. One class of 
such optimizations may be addressable at the WILL level, while a VHLL expression 
is being translated to a normalized version, by rephrasing. For example, in the 
same VHLL expression of Example 12, it is easy to see that the only significance 
of ?mgr is to link the set EMP to a set of values (SALARY'S) which is then used 
for comparison with SALARY(?emp). Thus, the VHLL expression can be rewritten 
as: 

?emp WHERE EXISTS(?s WHERE SALARY(?emp)>?s 
AND ?s IS_IN SALARY(HAS_MGR(EMP))) 

which then will mean: 

(FILTER 
(LAMBDA (?emp) 
(EXISTS 

(LAMBDA (?s) (GT (SALARY ?emp) ?s)) 
(MAPP SALARY (MAPP HAS_MGR EMP)) ) ) 

Dsal ) 

Again, subject to the knowledge that there are far fewer SALARY's for managers 
than there are members in EMP, the two MAPPs can be removed from within the loop, 
as in the previous case; otherwise, the two MAPPs and the EXISTS will be .jammed 
into a single L which would traverse the set EMP. 
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