=ESETE ' WILU-LTUG, JUNE 1UBL

AN ATOMIC NETWORK PROGRAMMING LANGUAGE

PAULA S, NEWMAN

Fy

5&!‘:‘*‘*— s a

+ -
R S L TS

1977 LOS ANGELES SCIENTIFIC CENTER REPORTS

+G320-2686 April 1977

T. LANG, C. WOOD & E. B: FERNANDEZ, Database

Buffer Paging in Virtual Storage Systems (24 p.)

G320-2687 April 1977
R. C. SUMMERS & E. B. FERNANDEZ, A System
Structure for Data Security (41 p.)

+H5320-2688 June 1977
T. LANG, E. NAHOURAII, K. KASUGA & E. B.
FERNANDEZ, An Architectural Extension for a
Large Database lricorporating a Processor for Dick
" Search (30 p.)

G320-2689 July 1977
€, WOOD, E. B. FEBRNANDEZ & T. LANG, Minimi-
zation of Demand Paging for the LRU Stack Modei of
Program Behavior (21 p.)

G320-2690 September 1977-
B. DIMSDALE, A Geometric Optimization Problem
{20p.)

. +G320-2691 September 1977
8. DIMSDALE, Convex Cubie Splines {32 p.)

G320-2692 September 1977
B. DIMSDALE, Convex Cubic Splines 11 (18 p.)

G320-2693 September 1977
E. B. FERNANDEZ, H. KASUGA, Data Controlin a
Distributed Database System (26 p.Y

1978 LOS ANGELES SCIENTIFIC CENTER REPORTS

G320-2684 March 1878
5. JUROVICS, An Investigation of the Minimization
of Building Energy Load Through Optimization
Techniques (28 p.)

G320-2695 November 1978 ’
.. LICHTEN, An Approach to Solving Surface
-Connectivity Problems in Computer-Aided Design (41
p.)

G320-2696 November 1978
C. WOOD, R. C. SUMMERS, E. B. FERNANDEZ,
Authorization in Multilevel Database Models {28 p.)

1979 LOS ANGELES SCIENTIFIC CENTER REPORTS

G320-2697 March 1979
‘P. NEISWANDER, A Review of the National Bureau
of Standards Loads Datermination Program {NBSLD)
(12p.}

G320-2698 March 1979
C. WOCD & E. B. FERNANDEZ, Authorizationina
Decentralized Database System (35 p.}

G320-2699 June 1979
S. A. JUROVICS, Solar Radiation Data, Natural
Lighting, and Building Energy Minimization {20 p.}

G320-2700 August 1979
A. INSELBERG, An Integral Equation Arising in a
Gonvective Heat {Mass) Transfer Problem Through a
Boundary Layer (19 p.)

G320-2701 September 1979
G. J. SILVERMAN, D. W. LOW, Construction of
Optimal Synthetic Weather Data by Convex Com-
bination {14 p.)

1980 LOS ANGELES SCIENTIFIC CENTER REPORTS

G320-2702 March 1980
K. EWUSI-MENSAH, Criteria for Decomposing an
Information Systemt Into Its Subsystems for Business
Systerns Planning (26 p.)

G320-2703 March 1980
K. EWUSI-MENSAH, Computer-Aided Modeling and
Analysis Techniques for Determining Management
Information Systems Requirements {30 p.}

G320-2704 June 1980
PAULA 8. NEWMAN, An Atomic Network Pro-
gramming Language {29 p.)

G320-2875-5 April 1980
Compiled by KATHERINE HANSON, Abstracts of
Los Angeles Scientific Center Reports {104 p.}

v The availability of reports is correct as of the printing date of this report.

* N
+ Appeared in an qutside publieation. Not available in Scientific Center report form. Please refer to the list of outside publications on

the inside back cover for avalability of reprinis.

o Copies of repc.:rt‘ are no longer available from the Scientific Center.

oy

T4

IBM LOS ANGELES SCIENTIFIC CENTER REPORT NO. G320-2704

June 1980

AN ATOMIC NETWORK PROGRAMMING LANGUAGE

Paula S. Newman

IBM corporation
Los Angelas Scientific Center
9045 Lincoln Boulevard
Los Angeles, Califorania 90045

"

ABSTRACT

There have bean many recent studies of approaches to reduc-
ing the fragmentation of implementation languages into
programping languages, data manipulation laanguages, command
languages, etc. The purpose of this paper is to present
somz2 current results of one such study. The results include
the definition of a significant part of a language which
completzsly integrates data base accessing into a traditional
programming lanquage framework, and the definition and
justification of a data model which makes such integration
feasible. The model used is an instance of what is called
here an Matomic network", a network in wvhich each fact is
represented by an individual element.

{’.\

1.0 INTRBODUCTION

. — iyt s Yol rab s S e

An application system is npormally implemented using a
combination of languages, such as programamiang languages,
data manipulation languages, and languages coatrolling such
systens-related functions as process initiation,
inter-process communication, etc. This separation of
linguistic function is due to a combination of historical
accident, and considerations of portability and standardi-
zation. As data-base and systems-related <functions becoue
more significant, the fragmented approach becomes less
justifiable, and a major source of unnecessary complexity.

Accordingly, there has beean considerable investigation into
methods of integrating additional functions into existing or
ne¥ prograsmming languages. Most efforts focus on integrat-
ing s2ither data-base-related functions, ssch as [4, 23, 8],
or system-related functions, such as [9, 6], but a few, such
as {19, 1073 address both issues. (Note: the above refer-
ences are not intended to be exhaustive, but rather repre-
sentative) .

The atomic network programming language, currently incom-
plete, is intended to be an instance of the latter
direction. Integration of data base manipulatiom is accom-
plished by using a single, directly-addressed, data model
for all data. Distinctions between classes of data are pade
on the basis of differences in declared scope and lifespan,
rather than on the basis of differences in accessing syntax.
Also, traditional HLL statement types are adapted for
consistency with a database environment. Integration of
systeas-related functiom is obtained by a suitable execution
environaent definition, and language forms for transaction
handling and inter-process commpunication.

The data model used is a version of what is called here an
Yatomic network", meaning any kind of network model in which
zach fact is represented by a separate object. {Atomic
networks thus subsume structures called variously "semantic
networks", "functional nodels", “"associative networkst,
“entity-relationship models", etc.) The integration of
accesses against such a base into a programming language can
be done very smoothly, by relating the "entities" and
massociations®™ of the model to sets of scalars and sets of
vectors, and then to the variables and functions of clas-
sical high levael languages.

In the past, atomic networks have more often been studied a)
as foundations for artificial intelligence ®knowledge
bases", and b) as "conceptual models™ of data bases imple-
mented using other structures, than as accessible structure.
some relatively early efforts are represented by [21, 22,
11]. Only quite recently, in such efforts as DAPLEX [23],

TASL {14], PQL (1], FST (2], and the process specification
language of [10] has there been an explicit recognition of
their potential as a base for high level accessing syntax.

It should be noted, however, that while exploitation of the
full chain, i.e., networks --> sets --> language is rela-
tively new, many aspects of the chain are not new. As far
back as 1962, the creators of SIMSCRIPT recognized that data
asscciations could be referenced as functions [18].
Furthermore, SETL {20], developed in the early 70's, defin-
itively established the second link in the chain.

The purpose of the paper is twofold. The primary purpose is
to introduce the data accessing and algorithaic aspects of
the language. While many constructs are shared with the
efforts referenced above, especially [23] and {20], the
language is unigue in the extent of the integration, im the
balance achieved between succinctness and readability, and
in approaches taken to specific problems. 'The secondary
purpose of the paper is to introduce the model, and to
explore, to some extent, the interplay between model and
language. While alternative atomic networks, and individual
components, have been compared with respect to uatility for
conceptual modelling [3, 15, 16], there has been little

discussion of the implications of those alternatives for

accessing language.

We will begin with the discussion of an informal data model,
sufficient to motivate the language ({section 2). The major
procedural constructs of the language are presented in
sections 3 through 5. Following this the actual model used
is defined and justified (section 6}, and some information
is provided about data definition (section 7). This slight-
ly inverted order simplifies the presentation, as justifica-
tion of the model is partially based on lingquistic consider-
ations. (The language sections can be reread following the
description of the actual model to verify the connection.)

2.0 INFORMAL DATA HODEL

e S Uk it

PART .COLOR

12345 blue

e Tl e R
B me dee e vets e ey . — ol

Figuore 1: "Entities"

+

An informal, intuitive data model which might be manipulated
by the language is given by the examples of figqures 1
through 3. What might be thought of as eantities (Figure 1)
ara represented by nodes identified by a combination of

typeset name (PART, COLOR), and wmeaber name ("12345%,
"blue™) .

r
I

il

i PART , SUPPLIER
| #— aas_svppLiER /

i 12345 AAA-PARTS
|

| (a)

|

l .

| PART . 2 COLOR
1 HAS_COLOR [~ :
| 12345 blue
|

| (b)

i

1

i Fiqure 2: Relationships

L R

TR ——————— A e e i

Relationships (Figure 2) are represented by relationship
nodes identified by a combination of typeset name, and
participant identifiers. Numbered arrows emapating from the
relationship nodes indicate the ordered participants. Thus
Figure 2a represenRts the "HAS-SUPPLIER" relationship between
the PART *%12345" in the first role, and +the SUPPLIER
WAAA-PARTSY in the second. Inverse (perauted) relationships
nay be defined. No distinction 3is made between "attribute"®
relationships and other relationships (Figure 2h).
Relationships may participate in other relationships (Figure
3a), and relationships may be n-ary (Figure 3b).

The integrity rules assumed are:

. Nages of members within a particular eptity typeset must
ba drawn from a particular predeclared set of names
{¢hich may be "ianfinite").

. All relationships within a particular relationship
typeset must have the same degree, and must connect the
sape types of objects.

It should be remembered that the above model 1is intended
only to make the language examples comprehensible; the
actual model used is defined further on.

PART a SUPPLIER
4 HAS_SUPPLIER _”
12345 ABA-PARTS

CORTRACT

67894

()

PART ! & SUPPLIER
SOUPPLY i

12345 ‘Lf AAR-PARTS

WAREHCGUSE

EASTERN

(b)

o S S T W T — i T TS S e T M GU — g W QA —— S i Wt — —p— — oy t—
b St it b mime em e WAL ek Gk b e den W SN Y W ST MG e vems e s S mmmn ST SN R AN e, ey G owih el Sk — i

Pigure 3: More Relationships

Expressions are the most important coastruct of the
language. They are used to express assigned values, repe-
tition specifications, conditions, and on-line gueries.

Expressions are built of 1ljiterals, typeset references,
gopgrators, function references, and selection clauses. Each

of these constructs will be examined ip turn below.

r — 1
I I
| "12345" literal alpha scalar |
| 29439 literal numeric scalar |
| TRUE literal boolean value |
| e 12345 literal surrogate |
i <"™12345", "12346"> literal vector |
| (L "12345%, "12346%) set of scalars |
| (_<"™12345%", "AAA_PARTS">_), |
i <®12346", "PARTS_INC">) set of vectors |
| |
| Figure 4: Literals |
[N J

Literals. Figure 4 illustrates various types of literals
and sets of literals. Note the distinguished parentheses,
"(_", used to enclose sets; curly brackets would be prefer-
able, but are often unavailable. (The term ™surrogate",
introduced in [12], is now fairly well known; its adapta-
tion here is discussed further on.)

Figure 5: SUPPLIZR Data Group

¥

|

|

|

| PART ; 9 SUPPLIER
| HAS-SUPPLIER

i 12345 AAA-PARTS
i

|

l]

| HAS-SUPPLIER KR

|

i SUPPLIER
|

I AAA-WIDGET
|

| ‘4 HAS-SUPPLIER

|

|

|

| PART . SUPPLIER
i HAS-SUPPLIER

I 12346 PARTS-INC
|

|

|

L

Typeset References. Figure 6, referencing the sample
database depicted in Figure 5, illustrates typeset refer-
ences and their meaning. The value of a typeset reference

i
PART =x==) (_L"12345n, "12346_)]
1
|

HAS_SUPPLIER ====) (_L<™12345%, “AAA _PARTS">,
<"12345%, "AAR_WIDGETSH>, |
<"12346", "AAA_WIDGETS™>, |
<"12346", OPARTS_INC">) |

[t e P ke i e f—— A —)

bt e et

Figure 6: Typeset References

is the set of literal names of members of the set. An empty
set has the litaral value NOGLL.

In fact every expression in the language avaluataes to one or
more literals. This interpretation facilitates the use of a
primary mechanisa for the blending of database and program-
ming syntax, namely, that typesets (which may be restricted
to contain only one member), are the variables of the
Program.

- -

It should be noted that while the lanquage is set~based, the
‘concept of set used 1is very primitive. No operational
distinction is made between a scalar, e.g., %12345", and a
set containing a single wnember, e.g., (_"12345%"_)., Also,
sets do not have structure, in that sets may not have other
sets as members. i '

HAS_SUPPLIER ("12345") -
===> {_"AAA-PARTS", "AAA-WIDGETS")

HAS_SUPPLIER{{_"™12345", "12346"_))
=== all the suppliers

HAS_SUPPLIER (PART)
== all the suppliers

HAS_SUPPLIER ("12345%, ?2)
== {_PAAA-PARTS", "AAA-WIDGETSY_)

HAS_SUPPLIER (2, "“AAA-PARTSH)
== n12345n

HAS_SUPPLIER ("12347%)
===> NULL

Pm—_m——-—u—_——w—m—a—_—-’_—-—q

Pigure 7: Function

bt S . e A dmpits WT A o e ke A W W v e Sttt it v rern ol

"

L
ki e A — . o oo — . T— — — Y~

e s S mhe il PR A A e A S L R A

and others, the recognition that associations can be refer-
enced as explicit (stored) functions is exploited. In
ganeral, given a relationship typeset R whosa meabers are of
degree n, then a reference of the form:

Fupnction References. 1In common with SETL [20], DAPLEX {23],

- R(El" “e ey Em'1' ?) EE+1, o.-.-.En)

has the mwmeaning ™the unique literals denoting objects
participating in the ath role of a member of R whose other
participants belong to the sets denoted by EV, BE2, Em-1,
Eg+1, e..., BEn." If the unknown participants are in the nth
raole, then the structure can be abbreviated:

- R(E1' awag En-1)

Figure 7 illustrates instances of function references. Note
that: a) multi-sets are collapsed, b) the second and third
exaaples evaluate to the union of the expressions
HAS_SUPPLIER(12345) and HAS_SUPPLIER{12346), and c) the
application of a function to a value for which it is unde-
fined gives the result NOLL.

HAS_SUPPLIER ("12345") INTER HAS_SUPPLIER ("12346")
===> WAAA-WIDGETS"

"AAA-PARTS™ ISIN HAS_SUPPLIER{"12346"™)

=== FALSE
HAS_SUPPLIER CTHNS <"12345", "AAA~PARTS™>
=== TROE :
HAS_SUPPLIER: ("12345","AAA-PARTS™)
===3 TRUE
1.1 % COST(™12345") > 10.00 ===> 7

E

Figure 8: Operators

b o e e e bl e WA G WS Ak ASS SEM Smve jwe e A

Operators.. The operators provided are as follows:

. set operators: ORIOCHN, INTER, NMINGS

. set coasparisons: ISIN, CTHS, EQ, NROTEQ
» value comparisons: = > <K etc.

. string operators: i} others?

. arithpetic operators: + - etc.

. boolean operators: ARD OR NOT

Set operators and coaparisons take any expressions as
operands. The other operators reguire that at least one
operand be scalar in intension, i.e., detectable at compile
tipe to be scalar by an examination of declarations. Such
operators applied to two scalars produce a scalar; applied
to a scalar and a set they produce a set. In general,
operators require Tappropriate" operands, e.g., concat-
enation may not be applied to numbers. As the traditional
operator aspect of the language is not a focal point, Bno
decisions have been made as yet with respect to “appropriate
operands¥, evaluation order, and implicit conversions.

Figure 8 illustrates the use of operators. MNote the use of
a shorthand form of CTNS, ":". It can be used with either
entity sats or relationship sets, and permits a
predicate-like notation.

Built-in Functions. VWhile the géneral topic of built-ia
functions will not be considered here, functions operating
on sSets as a whole, such as COUNT, AvVG, SUM, will be
discussed to illustrate a particular set of probleas and the

solutioas provided.

Consider the problem of obtaining a number representing the
average cost of parts, in a single expression, assuming the
schema shown in figure 9. The form AVG({COST (PART)) will
not do. Based on earlier definitions, the term COST(PART)
obtains a set without any deplicates, whereas AVG would seen
to require a aulti-set. Purthermore, AVG(I), £ a set,
obtains the set resulting from the application of AVG to
each mesmber of X, which is clearly not what is desired.

#Functional modification™ will be introduced to deal with
the first problem. If P is a functionr, then M@F represents
a modification M of F. A NONUNIQUE modification might be
defined as follows: if P(A), before the elimination of
duplicates, gives {(_al, a2, ..., an_) {i.e., for some i, j,
ai = aj), then NONUBIQUEDF {(A) gives <1, al>, <2,az2>, etc.
Using this convention, two forms of aggregate functions
might be defined, one operating on scalars, and one operat-
ing on pairs, e.g., AVG, and AVG2. (Note: Another useful
functional modification might be INVERSE.)

The second problem can be solved by a variety of means.
Possibly the sigpplest is to anclose arguments intended to be
processed as a unit in some distinquished pareatheses, e.qg.,
brackets. Thus to find the average salary of employees, One
would write: AVG2[NONONIQUEQSAL(ENP)}], or, if it can be

«

assumed that NONUNIQUE is the most common of the functional
modifications, AVG2[@SAL(EKP)].

Figure 9: EMPLOYEE Schema

L] R |
| |
| i
] BAS~NMGR t
|

i (HAS-EKP) =
i i
i i
| : | |
| EMP HAS_SKILL SKILL I
] i
H i
| |
| ¥ I
| SAL = SALARY {
i |
i H
i i
| i
L 1

?enp WHERE SAL (Zeap) > 10.00
=== The employees with salary
greater than 10.00

?emp WHERE SAL {?eap) > SAL (HAS_MGR{?eap))
=== The employees earning more
than their managers

<?emp, 7sal> WHERE SAL (HAS_HMGR (?emp)) = ?sal
===> Employees paired with their
managers salaries.

<?emp, SALARY(?emp), ADDR(Z?emp)> WHERE
?emp ISIN EKP

Pigure 10: Selection

s G e Gt G M S e —— g Sk e "— . r—)
bt Gt s v WA e v T S A g P S AR WA Ay S mass

Selection Clauses. Selection clauses function both as
ordinary programming Jlanguage expressions and an extremely
powerful and comprehensible linear query language. Coasider
the first example of figure 10, referencing the EMPLOYEE
data group depicted in figure 9. The meaning of the
expression is: "What are the values of selection variable
t?enp' for which selection clause *SAL(Zemp) > 10.00* has

the value TRUE?"™ Similarly, the third example requests all

pairs .of selection variables <?emp, ?sal> which together
satisfy the selection clause.

At any particular point in time a selection variable repres-
ents at most a single scalar or vector. Rach selection
variable must have a fipite range. The range may be given
explicitly, by a term such as "?var ISIN setname", or may be
implied by an associated relationship typeset nanme, For
exasple, ?emp is known to range over the set EMP not because
of its name, which is arbitrary (Zabc would do as well) but
because the SAL relationship is defined only betweea members
of EMP and members of SALARY. (The implied range may also
be the intersection or unnion of one or more sets.)

This is a unigue approach made feasible by the requirement
that relationships draw their participants in specific
positions from specific sets. The most important advantage
is that it allows the use of several variables having the
same range in a straightforward yet succinct way. This
regquirement is discussed further in conjunction with the
model, below.

?mgrc WHERE HAS_ENP: (?mgr, 2?emp)

AND HAS_SEKILL(??emp) EQ NULL
=== Managers responsible for
employees with no skills

7emp WHERE HAS_SKILL (Zemp) EQ SKILL
=== Enployees having all skills

?mgr WHERE HAS_EHPS (?mgr) ISIN
(?emp WHERE SAL(?emp) > SAL (HAS_MGR (?eap))
=== Managers, all of whose employees
earn more than they do

ru—-u—-—-—._-ﬂiu—-—p—m—“-_—-
Bt e i G e o dees SER sken it em e wbih wbiee SMS i

Figure 11: Quantification Equivalents

Quantificatiop. Existential quantification is indicated by
the use of a double guestion amark, e.g., ??string. This is
not necessary for the query form, as such guantificatiom can
be inferred for any selection variable not appearing to the
left of "WHERE"™. However, selection variables can function
as iteration variables 3in loops (see below), so in a
programmaing context the assumed scope of the variable must
be made explicit.

10

L4l

The capabilities provided by explicit universal
guantification can be handled adequately by set comparison.
Figure 11 provides examples of the use of quantification.
These examples are particularly good illustrations of the
balance of succinctness and clarity achieved by the
language.

—— e . e e e .

The language being described is not intended as a "DML"™, to
be embedded in some existing language. such coabinations
must always preserve a certain amount of fragmentation.
Instead, the flavor of HLL syntax is preserved, but state-
ment forms are waodified to suit the combined database /
prograaming environment.

Thus a basic assignment statement with the traditional form
"X = y", Y a get, and ¥y an element or set, is included.
411 nacessary set mnamipulations can be performed using the
basic assignment statement., However, some additional forams,
described below, are introduced.

HAS_COM | COMMISSION

AGENT

HAS_TERR [=— TERRITORY

Pigure 12: AGENT Data Group

e Gmme e S e A S S . s e cvine meme SN
e oy AR S PR Gl W e eyl S gy e i et

Extended Assignment. Pigure 13, referencing the schena
shown in figure 12, 1illustrates the use of basic and
extended assignment operators. The form "X += YI" performs
insertion, and is equivalent to "X = X UONION Y.™ The form
ny -= Y% performs deletion, and is eguivalent ¢to "X = X
NINUS Y.*"

11

AGENT = (_"Smith", “Jonas");

AGENT += "Reilly";
=== AGENT

AGENT UNIOKN "Reilly":

AGENT -= "Jones"%:

=== AGENT AGENT MINUS "Jones™;

Figure 13: Assignment

[o i s b —— iy
bt s owew mmme deem WA m e Gmme g ki

This extension reflects the spirit of the language; since
sets are things one naturally adds to and deletes from, the
change ensures that the readability of HLL's is preserved in
the database environment.

Other assignment operators might be introduced to indicate
what is assumed by the programmer about the "left of equals"®
set before execution of the statement, as per figure 14.
Such operators would further clarify dintent, and foster
inteqgrity (i.e., the enclosing transaction would not succeed
if the assumptions were untrue).

Figure 14: Other Assignment Possibilities

L 1
i i
| |
| oP SIMBGL WLEFT OF EQUALS™ ASSERTION |
i i
| Equal = Don't Care i
i == Enpty (Init) {
J /= NHon-Empty (Replace) l
i Add += Don*t Care |
i +4= Doesn't contain any right-of-eq i
i Delet -= Don't Care |
| ——= Must contain all right-of-eq I
] |
I |
L []

Functional Assignment. Figure 15 illustrates the use of
functional assignment. It is used in SETL {20] and is,
obviously, the set or database equivalent of array or
structure elament assignment. In the examples shown, the
meaning is probably self-explanatory. To illustrate the
more general case, if R is, for example, a ternaly relation-

ship, and X and Y are expressions, then
R{X, Y) += Z4;

=== R += <?x, ?y, ?z> WHERE ?x ISIK X
AND ?y ISIN Y AND 2z ISIN Z;

12

Ly)]

0

HASCON ("Saith™) = 1.1 * HASCOM("Smith");
=== Increase Agent Smith's commaission
by 10 percent.

HASTERR ("Smith") += "northwest%;
=== Add "northwest" to Agent Saith's
territories.

HASTERR(“Smith"i -== HASTERR (AGENT MINUS "Smith");
=== Remove any territories from Saith
also covered by another agent.

Figure 15: Functional Assignaent

[W e g d— — " p—— o G AT - —
by s e - — - t— — . o f—

while

=> R -= <?x, ?y, *> WHERE ?x ISIN X
AND ?y ISIN Y3
R

AGENT += ®jAlice Epstein®
(HASTERR = “H,Y.", "N.J.®
HASCON = .10 (:: COMTYPE "stddn),
nSteven Miller"
(HASTERR = etc.

Ph o e WS e e Bes e
be s g . — b ymen v w——

Figure 16: Factored Assignment

Factored Assignment. Factored assignment provides a read-
able form for the addition of an object together with some
of its associations. While the syntax is completely gener-
al, it has the appearance of a a tailored data entry
language. {In fact, the form is used as the basis for
declarative sSyntax, see below.) An exaasple is given in
figure 16. The effect of this statement is the same as:

AGENT += "Alice Epstein®™;

HASTERR ("Alice Epstein®) = (_"N.Y.", "N.J.Y_);
HASCON {(m"Alice Epstein%) = .10;

COMTYPE (<"Alice Epstein, .10>) = mgtddv;

AGENT 4= "Steven Killer?™;

HASTERR ("Steven Hiller") = etc.

13

Note that "COMTYPE" modifies the HASCOM relationship <"Alice
Epstein®™, .10>, rather thar the COMHISSION .10, This 1is
indicated by the use of P::v,

TRANS_TYPZE TRTYPE

-

I

)

TRANS _AGT 'l_ AGENT

TRANS

HAS_COM COMMISSION

|

HAS_TERR ~ TERRITORY

[

e e T o S M VT i S Wb WP U A s s e e e - S
T ————————— R et

Figure 17: TR (Transaction) Data Group

DB.AGENT += ?agent WHERE TR.TRANS_AGT: (?t, Zagent)
AND TR.TRANS TYPE: (?t, "NEWAGENT®);

v s e — iy

Figure 18: Multiple Data Groups

b e e p— .

___________ Groups. It was stated earlier that atomric
netuork structures were used for all data referenced in a
program. Thus they are used for both data base data and
local data. This means that a program generally references
many disjoint "data groups™ having different scopes and
lifetimes. To indicate the context of a particular refer-
ance, tha reference is prefaced@ by the name of the data
group involved (or more precisely, by a syabol which is
eventually bound to the name of the data group).

For example, coasider an application wvwhose purpose it is to
expand the 1list of agents in the AGENT data group {(Figure
12), given the input data group TR (Figure 17). That
application might be coded as shown in Figure 18.

14

)

®

A

5.0 CONTROL STATEMENIS

e e e by

The language has a groap of statements specifying control
flow. Some control statements appear as initial statements
of ®conrtrol structures®™, which have the form:

label: control statement;

END label:;

where labels may be omitted on innermost structures.
Statements ir this class are DO, which serves as a bracket,
REPEAT, which provides iteration, and IF, which provides a
conditional execution facility. REPEAT and IF will be
discussed further below. Other coatrol statements provided
are CONTINUE, EXIT, GOTO and CALL. CONTINUE initiates the
next itsration of +the enclosing control structure. EXIT
leaves the control structure. GOTO 1is permitted, but not
into a control structure from outside its range. CALL will
not be discussed further, as issues of argument types and
matching have not been decided.

REPEAT FOR EACH <?trans, ?agt> IN TR.TRANS-AGT;
DB.AGENT += ?agt
(HASCOK TR.COM (?trans)
HASTERR TR.TERR(2trans));
END;

REPEAT FPOR ?trans WHERE TR.COM(?trans} > .10;
BEPEAT FOR EACH ?7agent IN TR.AGENT, BY Zagent;

Figure 19: Repeat Statements

P e o e BT i P M e i et —
b oo v e AL ol M A S S e S faint S

Repeat Statemeat. The general form of the repeat statement

is:

. REPEAT FOR EACH selection-varjselection-vector IN eXp
as illustrated by the first exaaple of figure 19. This form
works well as long as Mexp™ is not a selection expression.

If it is, there is unnecessary redundancy, e.g.,

. REPEAT for ?trans IN {(?transX WHERE .cece.

15

The redundancy can be avoided by the elision illustrated in
the second example. The third example shows optional
ordering.

IF HASCOM(?agent});
IS < .05 THEN HASCOM(Zagent) = .05;
IS < .10 THER HASCOM(?agent) = .10;
IS OTHER THEN HASCOM (?agent) = .15;

END;

IF COUNT (HASTERR(?agent)), HASCOH{2agent);
i1s < 5, < .05 THEN HASCON(?agent) = .05;
IS > 5, < .10 THEN HASCON (?agent) = .10;
END;

IF HEASCOM(?agent) IS > .05 THEN GOTO NO-CHANGE;

o e e S e e — R — T — - ——

FPiqure 20: Conditional Statements

b o S G e S WG T W e e e S S

Conditionpal Statement. The conditional execution statement,
"IF", represents a merging of the traditional "IF" and
WCASEY", with a touch of decision table. Examnples are showun
in Fiqure 20. The result is a very regular fors more easily
fead than traditional nested forms. Consider the first
exanple. Giver only IP-THEK-ELSE, then something 1like the
following would be required {no attention is paid here to
terminators):

IF HASCON(?agent) < .05
THEN HASCOM (?agent) = .05
ELSE IF HASCOM(?agent) < .10
THEN HASCOM {?agent)
ELSE HASCOHN (?agent)

.10
-« 15

Similarly, the second example, which illustrates the siaul-
taneous testing of multiple wvariable conditioas, might be
coded more traditionally as:

IP COUNT (HEASTERR(?agent)) < 5
AND HASCOM(Zagent) < .05
THEN HASCOK(Z?agent) = .05
ELSE IF COUNT (HASTERR (?agent)) < 10
AND HASCOHM (?agent) < .10
THEN HASCOM (?agent) = .10

The traditional form is included for simple tests.

16

LY

a

1]

This completes the language description portion of the
paper. There Statement types not addressed here are either
not yet definitionally stable, or fall into the aexcluded
"systems-oriented" category.

6.0 DAIR XODEL

Ll
\=)
o]
77
0}
to
-
o
-3
et
o
-
s
=
o
=
-
t
Y
1=
1%
17
Loa)
o
=

. — T i T S WD S e il ke T ke sl S e e e

The language can be applied to a variety of wmodels. For
exaasple, it can be applied to the rough m@model given
originally by the device of "inmediately translating” the
value of every term f£from the data base object ostensibly
referred to, to its name. Thus, referring to figures 5 and

of objects in the set PART.

Probably the best model to choose, however, is one directly
implied by the language. FPor one thing, it makes readiag a
program that much simpler. For another, the semantics of
the above language are rather complex; anything in the
direction of simplification is useful. This suggests that a
set model be used (which can be represented as a network if
desired, see belopw).

The specific model chosen is related to that used in SETL
{20], and is heavily influenced by conceptual model concapts
found in [7, 16, 13, and 24]. Some traditional conceptual
rodel coanstructs are transformed for syntactic reasons. 1In
general, +the transformations are defended by taking the
position that conceptual model constructs have two purposes:

. To document what information is present (or needed) in a
data base.

. To dictate coastraints on implementations (object
behavior) .

Thus given a syntactically inconvenient coastruct, it is
reasonable to explore what functions it seems to fulfill
{not always an easy task), and to determine if they might be
provided by other means.

The model is introduced below. Descriptions of particular
features are interspersed with discussions of uahy certain
features are incorporated or omitted.

The Basic Model. The specific model chosen consists of four
kinds of objects: scalars. relationships (also called
vectors), sets of scalars ("scalar sets"), and sets of
relationships (“relationships sets" or "vector sets®}.

17

At least three built-in sets are provided: NUMBERS, STRINGS,
and BOOLEANS. Bach user-defined scalar set npust be
constrained to be a subset either of omne of the built-in
sets, or of some other user-defined set, in a hom-circular
fashion. {The members of) each vector set must be
constrained a) to ba of a particular degree, and b) to draw
participants in particular positions from particular (sin-
gle) source sets.

There are two kinds of primitive actions: add am object
{scalar or vector) to a set, and delete an object from a
seat. The deletion of an object from a set causes the
deletion of any relationships in which it participates as a
member of that set.

Static and Dynamic Sets. Dynanic sets are "normal" sets.
Their content is established and modified by assignment
statements, and must be finite. The content of static sets,
built-in or user-defined, is determined by definition, can
be infinite, and is established at the time a data base 1is
created. It may not be modified by assignment, but oanly by
modifications to definitions (as permitted). One might
specify that the content of a static set be defined by an
axpression, referencing only other static sets, in a
non-circular manner. However, such an expression must be
permitted to represeat an infinite set, and special
definitional forms would be useful (e.g., to 1limit string
syntax).

Static sets have several uses, the most important of which
is the avoidance of unnecessary code. HNormally, before an
object can be linked into a given relationship, it must be
separately placed into a set over which the relatioaship is
defined. For some kinds of objects, however, such as
measures, the fact that they are 1in a given set ({e.g.,
WEIGHT) is relatively uninteresting, so that it makes sense
to define the entire set ahead of time. Thus one can vwrite

. DB.PART += w12345" (HAS_WGT 500);

without worrying about explicitly adding 500 to the set
WEIGHT.

Since the model is intended to be used for all data, another
use of static sets is in modelling traditional array struc-
tures, when necessary. In general, an array is represented
as a relationship between a static set and the set from
which the array values are drawvah. For example, to model an
n by m array of arbitrary integers, one might define:

a. a static set N of the first m integers

18

¥

2]

b. a static set N of the first n integers
C. a static relationship NM of their cross product

d. A relationship ARRAY mapping from NM to the set of
integers.

A final use of static sets is in constraining the membership
of other sets. This is a natural way of providing the

required integrity function without the introduction of
additional concepts.

Derived Sets. Algorithmic function definitions are to be
included in the language, although they are not described
here. As recognized in [23], the power of the language
makes it worthwhile to also provide a facility for the
definition of derived sets by single expressions. T¥o cases
may be identified: a) when the derived sets are explicitly
identifisd as subsets of other sets, and b) when they are
not., In the first case, the derived sets may be used as
relationship participant constraints.

1234
T
HAS_COLOR E— —P
L?.
€
BLUE [~

R R Sl

FPigure 21: Multi-Comntext Objects

b e e S i S e e G dee gy A S Y S WA Mgk Svee e

Some Implications. The model described above has sone
discomforting aspects, particularly from a data base point
of view. First, it implies that the set of objects in a
data base is infinite. Second, it allows a data base such
as that shown in Fiqgure 21, illustrating that, in general,
it is only from the name of a relationship that one can
discover the context in which the elements are being
related. Thus "BLUE® is being related as a COLOR to the CAR
®1234% via the relationship HAS_COLOR, .and is being related
as a MOOD to the EMPLOYRE ®1234% via the relationship

19

WHAS MOOD%, Finally, thke model probably appears overly
mechanistic; it has relatively few semantic overtones, and
is missing some familiar "conceptual model®" constructs.

¥ith respect to the "infinite data base™ problem, it should
be pointed out that a) the infinite sets are not stored, and
b) the uses of infinite sets in expressiomas are strictly
lirited.

The second problem, regarding contexts, is visual oanly, as
one cannot generally obtain information about the set of all
relationships in which a particular object participates.
That being the case, the problem c¢an be resolved by the
following diagramming rules, which restore the pictorial
simplicity of :the original model:

1. Depict only meambers of dynamic sets, and those members
of static sets which participate in some vector
{relationship) .

2. Display multiple reprasentatives of the same object,
one for every set membership by which it qualifies for
display (by rule 1). (Note: in the context of addi-
tions to the model below, this should read “one for
every base-set membership ... ")

3. Connect nodes representing relationships to the appro-
priate representatives of their participant objects.

(These rules would cause the objects shown in Pigure 21 to
appear as expected according to the original model.)

Phe final cause of intuitive discomfort, the lack of seman-
tic constructs, requires more discussion. In the sections
immediately following, the reasons for omitting some famil-
iar constructs are explored, and soae additions are made to
the model to compensate.

What Happened Io Entities. Many models explicitly distin-
guish objects represeating "“entities®™ from other scalars
(e.g., M"attribute values", character strings, etc.). Gener=-
ally, the names of entities, if they have any, cannot be
printed; entities are located via other (non-entity) scalars
to which they are related. Often at least one entity must
participate in any reiationship. While there is no consen-
sus on what entities are [16], they seem to have several
purposes in a data wmodel, PFirst, “philosophically®, they
mirror the consideration that real world objects are differ-
ent from their real world identifiers. Thus for the sake of
fidelity they are represented by blank objects, or special
identification systems, etc. This may be justified, howew-
er, it can be pointed ocut that names are in fact the medium
by which things are represented in data processing systeas,

20

1
X

3]

automated or not.

There are, howvever, more practical applications of the
concept. First, entities are useful when existing idemtifi-
cation systens fail. For example, a) there wmay be saveral
alternative systems in use for a type of real world object,
no one of which is universal, or b) the same object must be
seen as & hnember of several unrelated typesets, each with
its own naring system, such as employee and stockholder
{173. In such cases, the imposition of a new identification
system, local to a data base, but universal within that data
base, has somke distinct advantages. Second, the distinction
between entities and other types of scalars can serve the
same purpose as the static / dynaaic set distinction
provided here.

The use of eantities, hovever, is linguistically awkvard. It
has the effect of constantly forcing oblique references to
objects, 2.9.,

. HAS_TERR (?agent WHERE AGT_NAME (Zagent) = "Smith®)
instead of
. HAS_TERR ("Smith")

Things become even more awkvard in the context of multiple
data groups, because an object would be represented as a
different entity in each group (which also seeas to remove
some of the philosophical justification). One could not for
aexapple, state:

L DB.AGENT += TR.AGENT;
but rather would require something like:

. FOR BACH 7agent IN TR.AGENT;
DB.AGENT += WK.TENP = NEW_ENT(DB); (a built-in £n)
DB.AGT_NAME (WEK.TEMP) = TR.AGT_NANE (?agent);

Given a) the linguistic inconvenience, aad b} the fact that
the model is intended to be used for all data (not just
"data base data®), it is clear that though the concept of
entity can be useful, it cannot coastitute a basic element
of the model. To provide the functions of entities, when
needed, two additional constructs are provided:
"gsurrogates’, and "propagation subsets®™.

The concept of surrogate is adapted from [12]. An addi-
tional built-in set, SURROGATE, is prowvided, being an
infinite set of distinguished objects having +the form
esreal-nuaber, together with a built-in function
"NEWSURR (dlatabasename)". Then if entities are desired in a

21

data base, the user may define a set called ENTITY (or
anything else), constrained to drav its members from SURRO-~
GATE. For consistency with the language, surrogates (the
members of SURROGATE) are printable.

Propagation subsets are related to similar concepts ian [7,
13, 24]. The sets which have been considered so far will be
referred to as "base sets". 1If a set 51 is declared to be
not a base set, but & "propagation subset® of some other set
S, it has the effect that the addition of an object +to S1
implicitly causes its addition t6 S, if not already there.
The constraining set of S1 is the same as the constraising
set of S (unless S is itself a propagation subset, etc.).
However, relationship participants can be constrained to
propagation subsets.

Propagation subsets are useful, in general, as implementa-
tions of the "generalization hierarchy" of [24], but they
are not absolutely required except in an entity context.
When entities are not used, the equivalent fuaction can be
obtained by:

a. defining some classifying relationships (e.g.,
ACCOUNT_TYPE)

b, defining some derived sets based on the classifying
relationships (e2.g., CHECKING_ACCTS, SAVINGS_ACCTS)

C. using the derived sets as relationship partic-
ipation constraints.

¥ith entities, however, a sufficiently large number <of
objects belong to a single generalization hierarchy, that
the lack of explicit subsets is too unwieldy, both
definitionally and operationally.

What Happened to Attributes. Many models considered “con-
ceptual" distinguish strongly among various types of associ-
ations. Some of the distinctions made have a semantic
flavor (e.g., event associations, attribute associatioas),
vhile others seem structurally based (e.g., only binary
relationships allowed, others handled as entities). While
semantic distinctions may provide interesting information,
they are not included ir the model, for two reasons. First,
there is no consensus on what categories are useful, and
what they represent. (This may be because such deterni-
nations are more properly made in the context of "knowledge
base” systems.) Second, distinctions in constructs gener-
ally imply distinctions in syntax, and heance coaplexity.

As an example, comsider attribute associations. ¥hile
attributes have a flavor of one-sidedness, and a seeming
purpose of describing one of the participants, these are

22

¥

A

th

o

ty

clearly rather subjective notioas [15], especially in our
non-entity environment., Moreover, if attributes vare
included in the model, they would be syntactically annoying;
given an additional database construct, presumably there
should be an additional language comnstruct, e.g.:

. ?agt.SALARY = 100 AND MANAGER(?agt) = "Jones"
instead of
e SALARY(?agt) = 100 AND MANAGER(Zagt) = "Jones"®

Given the lack of .theoretic justification, the syntactic
problem is considered decisive. With respect to represent-
ing structurally different relationships by different
constructs, it is very difficult to understand why this
should be done. The subject will not be pursued here,
except to note that the motivation should not be one of
reference syntax; the language forms described above allow
both n-ary relationships, and relationships participating in
other relationships, to be referenced without difficulty.

Why HNot Use "Batural® Relationship Napes. The model
requires that all members of a relationship set draw partic-
ipants in the same role from the same set. In other, more
"natural®” models, the same association name can be used to
relate many kinds of objects. Tor example, CONTAINS might
relate both OFFICES to FORNITURE and DEPARTMENTS TO EMPLOY-
EES. This is indeed the way associations are referenced in
the "real world", where contexts can be implicit. In an
accessible data model, however, contextual information is
needed both in the data, and in referemces to it.

With respect to the data, consider first relatioanships
between non-surrogates. Here only some sort of relationship
name or name adjunct can indicate which objects are being
related, e.g., which CONTAINS relationship pertains to
OFFICE ®15C" and which to DEPARTHENT "15C"™. Next, even in
the case of surrogates, each representing a single object,
there is a problem. Consider a HAS_RESPONSIBILITY relation-
ship, linking an object representing both an emplaoyee and an
officer of a club to a task. There must be a way of indi-
cating in what role the person has that responsibility.

References to relatioaships must also include contextual
information, to indicate what specific relationship and
selaction variable domains are intended. Such contextual
information can be provided in many ways. The use of
distinguished relationship names has advantages both of
succinctness, and of consistency with what 1is clearly
necessary in the data itself. While it might be argued that
unique relationship names are difficult to remember, this
problem can be alleviated by establishing conventions for

23

relationship namiag. For example, relationships between X
and Y wmight normally be named M“HAS_¥Y%, with "X_HAS_I"
reserved for cases where nore specificity is needed.

Summary. In sumnmary, it might be observed that in the
process of inteqgrating data base accesses into a classical
HLL, framework, both the language foras and the data
constructs undergo some adjustment.

7.0 DATA DEFINITION

The discussion of data definition will be very brief, and is
intended only to provide a certain amount of perspective on
the types of assumptions being made.

Definition Data Groups The language is assumed to exist
within a development / execution environment incorporating
many atomic network data groups, among them application data
groups, and definition data groups. Bach global data group
has an associated definition data group specifying such

things as:

. The names of, and meabership constraints on, its scalar
sets.

. The names of, and participant constraints on, its vector
sets.

. Definitions of derived sets.

. Other integrity constraints on data base content,
expressed in either specialized form (for frequent
constraints), or as general predicates.

Definition information is expressed using a prescribed group
of scalar and vector sets appropriate to data definpition,
and is entered using normal means of accessing data groups.

Definitions in Application Programs. Applicationr programs
are also assugmed to contain definition information, namely:
&) declarations of subsets of global data groups used in the
program, and b) declarations of local data groups. Declara-
tions 1look like factored assigrment statements, and are
considered to create local definition data groups, loaded at
compile time. For example, the following statements might
be used to define a local data group named TEMP:

) DCL TEMP SCALARS = TRANS (CONSTRAIN
AGENT (CONSTRAIN

INTEGER),
CHAR) ;

24

»

V]

of

LH

B

. DCL. TEMP RELS = TR_AGT (PART = TRANS ({::INROLE
AGENT (::INROLE

[& Y
T et

-t gy
L L)

Derived sets and functions can also be defined, within a
program, to span data groups, for exanple:

- DEFINE BAD_SUPPLIER = ?supp WHERE DB.DELIVERY_WEEKS ...

- DEFINE GRANDCHILD(?x)} = DB.CHILD {DB1.CEILD{?x))

8.0 DIBECTIONS FOR FURTHER ¥ORK

As should be obvious, the above represents only a small step
toward the goal of language integration. Some obvious next
steps in the specification area include:

. Completion of the language specificationa to ianclude
systems-oriented aspects. What is needed is an appro-
priate model of the structure and dynamics of an-appli-
cation system, in the context of which decisioans, such
as ho¥w to handle process initiation, nessages, trans-
action boundaries, etc., can be made.

. A considerably aore precise expression of language
semantics, and the imposition of restrictions on
expressions, both to ensure “computability".

Some work has been completed in these areas and should be
available shortly. In addition, a considerabie amount of
work is needed in understanding how to apply current tech-
niqgues in optimization of HLLs, data retrieval, and data
storage design, to the language.

3.0 ACKNOWLEDGHENIS

The development of the model and language took place in two
stages. In 1976, the author worked closely with Bill Kent;
many aspects of the model were developed jointly at that
tise. In the second stage, 1978-79, discussions with Dennis
McLeod, FParhad Arbab, and Guillermo Rodriguez were extreaely
helpfaul.

25

(B

0.

1-

10.

11,

12-

13.

0

REFERENCES

P. Buneman, R.E. Prankel, nP0OL, A Functiopal Query
Language®™ ACE SIGMOD Int. Conf. on Mapagement of Data,
Boston, Mass. (May 1977) 52-58

M. Berthaud, M. Duponchel, "Toward A Foraal Language for
Punctional Specifications", Proc. IFIP Working Conf. on

gconstructing Quality Software, North Holland (1978)
H. Biller, E.J. Neuhold, "Concepts for the Conceptual
Schema", In Agpchitecture apnd Models in Data Base

Management Systeas, G.M. Nijssen, Ed., North Holland

—— i e s v v Sy e . ol e e B A

{1977} 1-30

N.W. Blasgen et. al., "SISTEM R: An Architectural
Update®, 1IBM Research Report RJ2581, San Jose,
California (July 1979) :

R.J. Brachman, "On the Epistemological Status of Seman-
tic Networks"™, In Associative Networks: Representation

and- Use of Knowledge by Copputers, Academic Press
(1979) 3-50

P. Brianch Hamnsen, The Architecture of Concurresnt

E.F. Codd "Extending the Database Relational Model to
Capture More Heaning', ACM ZPrapsactions on Database

Systems 4,4 (Dec. 1979) 397-434

C.J. Date, "An- Architecture for High-Level Language
Database Extensions", Proc. ACH SIGMOD Int. Conf. on

—— e

i o e ol it v e g A A e (e s e

J.A. PFeldman, "High Level Programming for Distributed
Computing®, Coarunications of the ACN, 22,6 {(June
1979), 353-368

N. Goldman, D. Wile, ™A Database Foundation For Process
Specifications"®, Proc. Int. Conf. on
Entity-Belationship Approach to Systems Analysis and

R.L.Griffith, "Information Structures® IBM Tech. Rep.
TR03.014, IBM, San Jose, Calif. (Bay 1976}

P. HBall, J. Owlett, S. Todd, "Relations and Entities®”
In Modelling in Data Base Management Systems, G.NM.
Nijssen, Ed., North Holland (1976)

M.H. Hammer, D.d. HcLeod, "The Semantic Data Model: A
Bodelling Hechanism for Database Applications®™ Proc.

26

1)

o

L}

14,

i5.

16.

17.

18.

19.

20.

21.

22.

23-

24,

B. Housel, V. Waddle, S.B. Ydo, "Functional Dependency
on ¥Yery Large Data Bases. Rio de Janeiro, Brazil (Oct
1979) 194-208

W. Kent, "Batities and Relationships in Information",
Architecture apd Hodels in Data Base Mapagedent

Systems, G.M.Nijssen, Ed., North Holland (1977) 67-92
W. Kent, Data and Reality, North Hollaand (1978)

¥. Keat, "Limitations of Record~Based Information
Models", ACHM Transactions on Database Systess, 4,1,
{March 1979) 107-131

H.M. Markowitz, B. Hausner, H.W.Karr, SIMSCRIPT: A

Simulation Prograpmind Language, Prentice Hall (April
1963)

N.S. Prywes, A. Pnueli, S. Shastry, "Use of a Nonproce-
dural Specification Language and Associated Program
Generator In Software Developument®™, ACHM Transactions on

Prograpming Languages and Systeas 1,2 (October 1979)
196-217

J.T.Schwartz, On Programming, An Interim Report on the
SETL Project, Computer Science DPepartment, Courant
Inst. Hath Sci., New York University {(1973)

B.E. Senko, "DIAM II: The Binary Infological Level and
its Data Base Language FORAL", Proc. Conf. oz Data
Structure, Salt Lake City

{March 1976) .

G.C.H. Sharman, "A New Model of Relational Data Base
and High Level Languages™, Technical Report TR.12.136,
IBM United Kingdoam, {(Feb. 1975)

D.W. Shipman, "The Functional Data Model and the Data
Language Daplex™, ACH SIGHMOD Int. Conf. on Hapagement
of Data, Boston, Mass. (May 1977) Attendee Supplenent

4

J.%. Smith, D.C.P. Smith, ™Database Abstractioas:
Aggregation and Generalization"™, ACH Iraasactions on
Database Systems, 2,2 (June 1977) 105-133

27

Figqure
Figure
Figure
Pigure
Figure
Figure
Pigure
Figure
Figure
Pigure
Figure
Figure
Figure

Figure

Figure -

Figure
Figure
Figure
Figure
Figure

Figure

List of Pigures

"Entities"

Relationships

Nore Relationships

Literals

SUPPLIER Data Group
Typeset References

Function References

Operators

EMPLOYEE Data Group

Selection

Owantification Equivalents
AGENT Data Group

Assignment

Other Assignment Possibilities
Functional Assignnent
Factored Assignment

TR (Transaction)} Data Group
Multiple Data Groups

Repeat Statements
Conditional Statements

Hulti-Context Objects

28

¥

)

¥

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1. AUTHOR(S) : 9, SUBJECT INDEX TERMS '
Paula 5. Newmarn

computiey, application
2. TITLE : programming
Very High Level Language

An Atomic Network Programming Language semantic network

3. ORIGINATING DEPARTMENT application development

entity/relationship model
L. A. Scientific Center - 60G v/ P

4. REPORT NUMBER

G320- 2704

5a. NUMBER OF PAGES 5b. NUMBER OF REFERENCES
27 24

6a. DATE COMPLETED 6b, DATE OF INITIAL PRINTING 6c. DATE OF LAST PRINTING
March 1980 June 1980

7. ABSTRACT :

There have been many recent studies of approaches to reducing the
fragmentation of implementation languages into programming languages,
data manipulation languages, command languages, etc. The purpose of
this paper is to present some current results of one such study.

The results include the definition of a significant part of a
language which completely integrates data base accessing into a
traditional programming language framework, and the definitien and
justification of a data model which makes such integration feasible.
The model used is an instance of what is called here an “atomic
network", a network in which each fact is represented by an
individual element.

8. REMARKS :

¥

Rl L

4 r PN

. E‘S‘""_f.:

e
i

1977 1BM LOS ANGELES SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

T. LANG & E. B. FERNANDEZ, Improving the Com-
putation -of Lower Bounds for Optimal Schedules, 1BM
Jougnal of Research & Development, Vol. 21, No. 3,
May 1877, 273-280;

A. INSELBERG, {(G320-2684) Variable Geometry
Cochlear Model at Low Input Frequencies: A Basis for
Compansating Morphological Disorders, IBM Journal of
Research & Development, Vol. 21, No. b, September
1977, 461-478.

T. LANG, E. NAHOURAII, K. KASUGA, E. B.
FERNANDEZ, An Architectural Extension for a Large
Database System- Incorporating a Processor for Disk
Search, Proceedings of the 3rd International Conference
on Very Large Data Bases, IEEE Computer Society, or
ACM, Tokyo, 1977, 204-210.

T. LANG, E. B. FERNANDEZ, R. C. SUMMERS A

‘System Architecture for Compile-Time Actions in Data-

bases, ACM 77 Proceedings of the Annual Conference,
Seattie, Washington, October 17-19, 1977, 11-15.

E. B. FERNANDEZ & C. WOOD, (G320-2685) The
Relationship Between Operating System and Database
System Security: A Survey, Proceedings of COMPSAC
77, 1st Intemational Computer Software Applications
Conference, |1EEE Computer- Society, Chicago, I,
November 8-11, 1977, 463-462.

T. LANG, C. WOObD & E. B, FERNANDEZ
(G320-2686}, Database Buffer Paging in Virtual Storage
Systems, ACM Transactions on Database Systems, Vol.
2, No, 4, December 1977, 339-351.

1978 1BM 1.0S ANGELES SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

B. DIMSDALE, {G320-2692) Convex Cubic Splines,
IBM J, Res. Develop., Vol. 22, No. 2, March 1978,
168-178.

E. B. FERNANDEZ, T. LANG, C. WOOD, Effect of
Replacement Algorithms on a Paged Buffer Database
System, IBM J. Res, Develop., Vol. 22 No. 2, March
1978, 185-196.

A. INSELBERG, {G320-2669) Cochlear Dynamics: the
Evolution of a Mathematical Mode!, Siam Review, Vol,
20, No. 2, April 1978, 301-351.

S. A. JUROVICS, Optimization Applied to the Desig}l of
an Energy Efficient Building, iBM Journal of Resedrch

* and Development, Vol. 22, No, -4, July 1978, 378-385.

E. B, FERNANDEZ, R. C. SUMMERS T. LANG, & C.
D. COLEMAN, (G320-2883) Architectural Support for
System Protection and Database Security, |IEEE Trans-
actions on Computers, C-27, No. 8, August 1978,
767-771.

R. C. SUMMERS & E. B, FERNANDEZ, An Approach

to Data Secutity, Proceedings of the 8th Australian

Comperter Conference, September 1, 1978,

D. W. LOW, A Directed Weather Data Filter, IBM
Journal of Research & Development, Vol. 22, No. 5,
September 1978, 487-497,

STEPHAN A, JUROVICS & DAVID W. LOW, Opt-

.mizing the Passive Sclar Characteristics of Buildings,

Presented at the Winter Annual Meeting of ASME, San
Francisco, California, December 10-15, 1978, 43-51.

