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ABSTRACT 

There have been many recent studies of approaches to reduc-
ing the fragmentation of implementation languages into 
programming languages, data manipulation languages, command 
languages, etc. The purpose of this paper is to present 
some current results of one such study. The results include 
the definition of a significant part of a language which 
completely integrates data base accessing into a traditional 
programming language framework, and the definition and 
justification of a data model which makes such integration 
feasible. The model used is an instance of what is called 
here an "atomic network", a network in which each fact is 
represented by an individual element. 

r 



1.0 INTRODUCTION 

An application system is normally implemented using a 
combination of languages, such as programming languages, 
data manipulation languages, and languages controlling such 
systems-related functions as process initiation, 
inter-process communication, etc. This separation of 
linguistic function is due to a combination of historical 
accident, and considerations of portability and standardi-
zation. As data-base and systems-related functions become 
more significant, the fragmented approach becomes less 
justifiable, and a major source of unnecessary complexity. 

Accordingly, there has been considerable investigation into 
methods of integrating additional functions into existing or 
new programming languages. Most efforts focus on integrat-
ing either data-base-related functions, such as [4, 23, 8], 
or system-related functions, such as [9, 6], but a few, such 
as [19, 10] address both issues. (Note: the above refer-
ences are not intended to be exhaustive, but rather repre-
sentative) . 

Th&atomic network programming language, currently incom-
plete, is intended to be an instance of the latter 
direction. Integration of data base manipulation is accom-
plished by using a single, directly-addressed, data model 
for all data. Distinctions between classes of data are made 
on the basis of differences in declared scope and lifespan, 
rather than on the basis of differences in accessing syntax. 
Also, traditional ULL statement types are adapted for 
consistency with a database environment. Integration of 
systems-related function is obtained by a suitable execution 
environment definition, and language forms for transaction 
handling and inter-process communication. 

The data model used is a version of what is called here an 
"atomic network", meaning any kind of network model in which 
each fact is represented by a separate object. (Atomic 
networks thus subsume structures called variously "semantic 
networks", "functional models", "associative networks", 
"entity-relationship models", etc.) The integration of 
accesses against such a base into a programming language can 
be done very smoothly, by relating the "entities" and 
"associations" of the model to sets of scalars and sets of 
vectors, and then to the variables and functions of clas-
sical high level languages. 

In the past, atomic networks have more often been studied a) 
as foundations for artificial intelligence "knowledge 
bases", and b) as "conceptual models" of data bases imple-
mented using other structures, than as accessible structure. 
some relatively early efforts are represented by [21, 22, 
11]. Only quite recently, in such efforts as DAPLE% [23), 



TASL [14], FQL [1], FST [2], and the process specification 
language of [10] has there been an explicit recognition of 
their potential as a base for high level accessing syntax. 

It should be noted, however, that while exploitation of the 
full chain, i.e., networks --> sets --> language is rela-
tively new, many aspects of the chain are not new. As far 
back as 1962, the creators of SIASCRIPT recognized that data 
associations could be referenced as functions [18]. 
Furthermore, SETL [20], developed in the early 70's, defin-
itively established the second link in the chain. 

The purpose of the paper is twofold. The primary purpose is 
to introduce the data accessing and algorithmic aspects of 
the language. While many constructs are shared with the 
efforts referenced above, especially [23] and [20], the 
language is unique in the extent of the integration, in the 
balance achieved between succinctness and readability, and 
in approaches taken to specific problems. The secondary 
purpose of the paper is to introduce the model, and to 
explore, to some extent, the interplay between model and 
language.. While alternative atomic networks, and individual 
components, have been compared with respect to utility for 
conceptual modelling [3, 15, 16], there has been little 
discussion o£ the implications of those alternatives for 
accessing language. 

We will begin with the discussion of an informal data model, 
sufficient to motivate the language (section 2). The major 
procedural constructs of the language are presented in 
sections 3 through 5. Following this the actual model used 
is defined and justified (section 6), and some information 
is provided about data definition (section 7). This slight-
ly inverted order simplifies the presentation, as justifica-
tion of the model is partially based on linguistic consider-
ations. (The language sections can be reread following the 
description of the actual model to verify the connection.) 

2.0 IHFOR!!AL DATE PIODEL 
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PART 

12345 

Figure 1: "Entities" 
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An informal, intuitive data model which might be manipulated 
by the language is given by the examples of figures 1 
through 3. what might be thought of as entities (Figure 1) 
are represented by nodes identified by a combination of 
typeset name (PART, COLOR), and member name ("12345", 
"blue") . 
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PORT 

12345 

PART 

  HAS_SUPPLIBR~ 

(a) 

12345 
RAS_COLOE 

(b) 

SUPPLIER 

AAA-PARTS 

1 
COLOR 

blue 

Figure 2: Relationships 

Relationships (Figure 2) are represented by relationship 
nodes identified by a combination of typeset name, and 
participant identifiers. Numbered arrows egagating from the 
relationship nodes indicate the ordered participants. Thus 
Figure 2a represents the "HAS-SUPPLIER" relationship between 
the PART "12345" in the first role, and the SUPPLIER 
"AAA-PARTS" in the second. Inverse (permuted) relationships 
may be defined. No distinction is made between "attribute" 
relationships and other relationships (Figure 2b). 
Relationships may participate in other relationships (Figure 
3a), and relationships say be n-ary (Figure 3b). 

The integrity rules assumed are: 

• Names of members within a particular entity typeset must 
be drawn from a particular predeclared set of names 
(which may be "infinite"). 

• All relationships within a particular relationship 
typeset must have the same degree, and must connect the 
same types of objects. 

It should be remembered that the above model is intended 
only to make the language examples comprehensible; the 
actual model used is defined further on. 
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PART 

12345 

PART 

HAS_SUPPLIER 
SUPPLIER 

1 

B! CONTRACT 

CONTRACT 

6789A 

(a) 

12345 
SUPPLY 

1' 
WAREHOUSE 

EASTERN 

(b) 

ALA-PARTS 

SUPPLIER

AAA-PARTS 

Figure 3: More Relationships 

3 .Q E PRESSIONS

expressions are the ®ost important construct of the 
language. They are used to express assigned values, repe-
tition specifications, conditions, and on-line queries. 

Expressions are built of ljterals, tygeset re€erences, 
operators, fugctoh references, and selection cjauses. Each 
of these constructs viii. be examined in turn below. 
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r 1 

"12345" 
25.39 
TRUE 
•12345 
<"12345", "12346"> 
(_ "12345", "12346"_) 
(_<"12345", "AAA_PARTS">_), 

<"12346", "PARTS_INC">_) 

literal alpha scalar 
literal numeric scalar 
literal boolean value 
literal surrogate 
literal vector 
set of scalars 

set of vectors 

Figure 4: Literals 

Literals. Figure 4 illustrates various types of literals 
and sets of literals. Note the distinguished parentheses, 
"(_", used to enclose sets; curly brackets would be prefer-
able, but are often unavailable. (The term "surrogate", 
introduced in [12), is now fairly well known; its adapta-
tion here is discussed further on.) 

PART 

12345 

12346 

HAS-SUPPLIER 

HAS-SUPPLIER 

Figure 5: SUPPLIER Data Group 

SUPPLIER 

AAA-PARTS 

SUPPLIER 

AAA-WIDGET 

SUPPLIER 

PARTS-INC 

TYPeset Refereaces. Figure 6, referencing the sample 
database depicted in Figure 5, illustrates typeset refer-

ences and their meaning. The value of a typeset reference 
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PART 

HAS_SUPPLIER =___> 

(_"12345", "12346_) 

(_<"12345", "AAA PARTS">, 
<"12345", "AAA WIDGETS">, 
<"12346", "AAA WIDGETS">, 
<"12346", "PARTS_INC">_) 

Figure 6: Typeset References 

is the set of literal names of members of the set. An empty 
set has the literal value NULL. 

In fact every expression in the language evaluates to one or
more literals. This interpretation facilitates the use of a 
primary mechanism for the blending of database and program-
ming syntax, namely, that t1pesets (which may be restricted 
to contain only one member), ate tag variables of the 
program. 

It should be noted that while the language is set-based, the 
concept of set used is very primitive. No operational 
distinction is made between a scalar, e.g., "12345", and a 
set containing a single member, e.g., (_"12345"_);. Also, 
sets do not have structure, in that, sets may not have other 
sets as members. 

HAS _SUPPLIER ("12345") 
> (_"AAA-PARTS", "AAA-WIDGETS" _) 

HAS_SUPPLIER((_"12345", "12346"_)) 
===> all the suppliers 

HAS_SUPPLIER(PART) 
===> all the suppliers 

HAS -SUPPLIER ("12345", ?) 
_==> (_"AAA-PARTS", "AAA-WIDGETS".) 

HAS SUPPLIER (?, "AAA-PARTS") 
> "12345" 

HAS SUPPLIER ("12347") 
> NULL 

Figure 7: Function 



Function References. In common with SETL [20], DAPLE% (23), 
and others, the recognition that associations can be refer-
enced as explicit (stored) functions is exploited. In 
general, given a relationship typeset R whose members are of 
degree n, then a reference of the form: 

• R(E1, .•.., Em-1, ? , Em+1,  En) 

has the meaning "the unique literals denoting objects 
participating in the mth role of a member of R whose other 
participants belong to the sets denoted by E1, E2, Em-1, 
Em+1, ...., En." If the unknown participants are in the nth 
role, then the structure can be abbreviated: 

• R(E1, ..., En-1) 

Figure 7 illustrates instances of function references.: Note 
that: a) multi-sets are collapsed, b) the second and third 
examples evaluate to the unog of the expressions 
HAS SUPPLIER(12345) and HAS SUPPLIER(12346), and c) the 
application of a function to a value for which it is unde-
fined gives the result NULL. 

r -

HAS SUPPLIER("12345") INTER RAS_SUPPLIER("12346") 
===> "AAA-WIDGETS" 

"AAA-PARTS" ISIN HAS_SUPPLIER("12346") 
= > FALSE 

HAS SUPPLIER CTNS <"12345", "AAA-PARTS"> 
==_> TRUE 

HAS_SUPPLIER:("12345","AAA-PARTS") 
===> TRUE 

1.1 * COST (" 12345") > 10.00 =__> ? 

Figure 8: Operators 

v 

Upgnt4Ts._ The operators provided are as follows: 

UNION, INTER, MINUS 

I5IN, CTNS, EQ, HOT3Q 

• set operators: 

• set comparisons: 

• value comparisons: 

• string operators: 

= > < etc. 

i i others? 
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arithmetic operators: + - etc. 

• boolean operators: AND 08 NOT 

Set operators and comparisons take any expressions as 
operands. The other operators require that at least one 
operand be scalar in intension, i.e., detectable at compile 
time to be scalar by an examination of declarations. Such 
operators applied to two scalars produce a scalar; applied 
to a scalar and. a set they produce a set. In general, 
operators require "appropriate" operands, e.g., concat-
enation may not be applied, to numbers. As the traditional 
operator aspect of the language is not a focal point, no 
decisions have been made as yet with respect to "appropriate 
operands", evaluation order, and implicit conversions. 

Figure 8 illustrates the use of operators. Note the use of 
a shorthand form of CTNS, ":" It can be used with either 
entity sets or relationship sets, and permits a 
predicate-like notation. 

Built-in Functions. While the general 
functions will not be considered here, 
on sets as a whole, such as COUNT, 
discussed to illustrate a particular set 
solutions provided. 

topic of built-in 
functions operating 
AVG, SUN, will be 
of problems and the 

Consider the problem of obtaining a number representing the 
average cost of parts, in a single expression, assuming the 
schema shown in figure 9. The form AVG(COST(PART)) will 
not do. Based on earlier definitions, the term COST(PART) 
obtains a set without any duplicates, whereas AVG would seem 
to require a multi-set. Furthermore, AVG($), I a set, 
obtains the set resulting from the application of AVG to 
each member of I, which is clearly not what is desired. 

"Functional modification" will be introduced to deal with 
the first problem. If F is a function, then NSF represents 
a modification N of F. A NONUNIQUE modification might be 
defined as follows: if F(A), before the elimination of 
duplicates, gives (_at, a2, ..., an_) (i.e., for some i, j, 
ai = aj), then NONUNIQUE~F(A) gives <1, a1>, <2,a2>, etc. 
Using this convention, two forms of aggregate functions 
might be defined, one operating on scalars, and one operat-
ing on pairs, e.g., AVG, and AVG2. (Note: Another useful 
functional modification might be INVERSE.) 

The second problem can be solved by a variety of means. 
Possibly the simplest is to enclose arguments intended to be 
processed as a unit in some distinguished parentheses, e.g., 
brackets. Thus to find the average salary of employees, one 
would write: AVG2[NONUNIQUEmSAL(ENP)], or, if it can be 
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assumed that NONUNIQUE is the most common of the functional 
modifications, AVG2[TSAL(EM?)]. 

HAS-MGR 
r 

(HAS-EN?) 

r 

EMP 4 II HAS_SKILL SKILL 

SALARY SAL 

Figure 9: EMPLOYEE Schema 

r 

?emp WHERE SAL(?eap) > 10.00 
___> The employees with salary 

greater than 10.00 

?emp WHERE SAL (?eap) > SAL (HAS_MGR (?emp) ) 
___> The employees earning more 

than their managers 

<?enp, ?sal> WHERE SAL(HAS_MGR(?emp)) _ ?sal 
___> Employees paired with their 

managers salaries. 

<?emp,, SALARY(?eap), ADDR(?emp)> WHERE 
?eap ISIN EM? 

Figure 10: Selection 

Selection Clauses. Selection clauses function both as 
ordinary programming language expressions and an extremely 
powerful and comprehensible linear query language. Consider 
the first example of figure 10, referencing the EMPLOYEE 
data group depicted in figure 9. The meaning of the 
expression is: "What are the values of selection variable 
'?emp' for which selection clause 'SAL(?emp) > 10.00' has 
the value TRUE?" Similarly, the third example requests all 



pairs .of selection variables <?emp, ?sal> which together 
satisfy the selection clause. 

At any particular point in time a selection variable repres-
ents at most a single scalar or vector. Each selection 
variable must have a finite range. The range may be given 
explicitly, by a term such as "?var ISIN setname", or may be 
implied by an associated relationship typeset name. For 
example, ?emp is known to range over the set EM? not because 
of its name, which is arbitrary (?abc would do as well) but 
because the SAL relationship is defined only between members 
of EM? and members of SALARY. (The implied range may also 
be the intersection or union of one or more sets.) 

This is a unique approach made feasible by the requirement 
that relationships draw their participants in specific 
positions from specific sets. The most important advantage 
is that it allows the use of several variables having the 
same range in a straightforward yet succinct way. This 
requirement is discussed further in conjunction with the 
model, below. 

r 

?mgr WHERE HAS _RE?:(?mgr, ??emp) 
AND HAS_SKILL(??emp) EQ NULL 
===> Managers responsible for 

employees with no skills 

?emp WHERE HAS_SKILL(?emp) EQ SKILL 
===> Employees having all skills 

?mgr WHERE RAS_EMPS(?mgr) ISIN 
(?emp WHERE SAL (?emp) > SAL (HAS MGR(?eap)) 
===> Managers, all of whose employees 

earn more than they do 

Figure 11: Quantification Equivalents 
L   j 

Quagtif}cation. Existential quantification is indicated by 
the use of a double question mark, e.g., ??string. This is 
not necessary for the query form, as such quantification can 
be inferred for any selection variable not appearing to the 
left of "WHERE". However, selection variables can function 
as iteration variables in loops (see below), so in a 
programmming context the assumed scope of the variable must 
be made explicit. 

c 

;r 
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The capabilities provided by explicit universal 
quantification can be handled adequately by set comparison. 
Figure 11 provides examples of the use of quantification. 
These examples are particularly good illustrations of the 
balance of succinctness and clarity achieved by the 
language. 

7 

4.0 ASSIGNMENT STATFggNTS 

the language being described is not intended as a "DM1.", to 
be embedded in some existing language, Such combinations 
must always preserve a certain amount of fragmentation. 
Instead, the flavor of HLL syntax is preserved, but state-
ment forms are modified to suit the combined database / 
programming environment. 

Thus a basic assignment statement with the traditional form 
y", % a set, and y an element or set, is included. 

All necessary set manipulations can be performed using the 
basic assignment statement. Nowever, some additional forms, 
described below, are introduced. 

r 

Figure 12: AGENT Data Group 
L 

Extended Assignment. Figure 13, referencing 
shown in figure 12, illustrates the use of 
extended assignment operators. The form "S +_ 
insertion, and is equivalent to "% = K ONION Y 
"K -= Y" performs deletion, and is equivalent 
MINDS Y.

the schema 
basic and 
Y" performs 
" the form 
to "% =X 
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AGENT = (_"Smith", "Jones"-); 

AGENT += "Reilly"; 
> AGENT = AGENT UNION "Reilly"; 

AGENT -= "Jones"; 
> AGENT = AGENT MINUS "Jones"; 

Figure 13: Assignment 
I-

This extension reflects the spirit of the language; since 

sets are things one naturally adds to and deletes from, the 

change ensures that the readability of HLL's is preserved in 

the database environment. 

Other assignment operators might be introduced to indicate 

what is assumed by the programmer about the "left of equals" 

set before execution of the statement, as per figure 14. 

Such operators would further clarify intent, and foster 
integrity (i.e.., the enclosing transaction would not succeed 

if the assumptions were untrue). 

OP SYMBOL "LEFT OF EQUALS" ASSERTION 

Equal = Don't Care 
== Empty (Init) 
/= Non-Empty (Replace) 

Add += Don't Care 
++= Doesn't contain any right-of-eq 

Delet -= Don't Care 
--= Must contain all right-of-eq 

Figure 14: Other Assignment Possibilities 

Functjonal jgnment. Figure 15 illustrates the use of 
functional assignment. It is used in SETL (20) and is, 
obviously, the set or database equivalent of array or 
structure eleneut assignment. In the examples shown, the 
meaning is probably self-explanatory. To illustrate the 
more general case, if R is, for example, a ternary relation-
ship, and X and Y are expressions, then 

R(X, Y) += Z; 
===> R += <?x, ?y, ?z> WHERE ?x ISIN X 

AND ?y ISIN Y AND ?z ISIN Z; 

S 

Y 
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HASCOM("Smith") = 1.1 * HASCOM(°Smith"); 
___> Increase Agent Smith's commission 

by 10 percent. 

HASTERR("Smith") +_ "northwest"; 
___> Add "northwest" to Agent Smith's 

territories. 

HASTERR("Smith") -= HASTERR(AGENT MINUS "Smith"); 
___> Remove any territories from Smith 

also covered by another agent. 

Figure 15: Functional Assignment 
~--  J 

while 

R(%,Y) = Z; 
___> R -_ <?x, ?y, *> WHERE ?x ISIN K 

AND ?y ISIN Y; 
R ($,Y) +=

r—

E 

AGENT +_ "Alice Epstein" 
(HASTERR = "N.Y.", "N.J." 
HASCOM = .10 (:: COMTYPE "stdd"), 

"Steven Miller" 
(HASTERR = etc. 

Figure 16: Factored Assignment 

1 

Factored Assignment. Factored assignment provides a read-
able form for the addition of an object together with some 
of its associations.. While the syntax is completely gener-
al, it has the appearance of a a tailored data entry 
language. (In fact, the form is used as the basis for 
declarative syntax, see below.) An example is given in 
figure 16. The effect of this statement is the same as: 

AGENT +_ "Alice Epstein"; 
HASTERR ("Alice Epstein") _ (_"N.Y.", "N.J."_); 
HASCON ("Alice Epstein") _ .10; 
COMTYPE (<"Alice Epstein, .10>) _ "stdd"; 
AGENT +_ "Steven Miller"; 
HASTERR ("Steven Miller") = etc. 

13 



Note that "COMTYPE" modifies the HASCOM relationship <"Alice 
Epstein", .10>, rather than the COMMISSION .10. This is 
indicated by the use of "::". 

I-

TRANS 

I TRANS _TYPE 

  __jTRANS_AGT 

ti

TRTYPE 

RAS_COM 

HAS TERR 

AGENT 

  COMMISSION 

TERRITORY 

Figure 17: TR (Transaction) Data Group 
 4 

DB.AGENT += ?agent WHERE TR.TRANS_AGT:(?t, ?agent) 
AND TR.TRANS_TYPE:(?t, "NEWAGENT"); 

Figure 18: Multiple Data Groups I 
s— i 

Multiple Data Groups. It was stated earlier that atomic 
network structures were used for all data referenced in a 
progra®. Thus they are used for both data base data and 
local data. This means that a program generally references 
many disjoint "data groups" having different scopes and 
lifetimes. To indicate the context of a particular refer-
ence, the reference is prefaced by the name of the data 
group involved (or more precisely, by a symbol which is 
eventually bound to the name of the data group). 

For example, consider an application whose purpose it is to 
expand the list of agents in the AGENT data group (Figure 
12), given the input data group TE (Figure 17). That 
application might be coded as shown in Figure 18. 

14 



5.0 CONTROL S!ATECENTS

The language has a group of statements specifying control 
flow. Some control statements appear as initial statements 
of "control structures", which have the form: 

labels control statement; 

END label; 

where labels may be omitted on innermost structures. 
Statements in this class are DO, which serves as a bracket, 
REPEAT, which provides iteration, and IF, which provides a 
conditional execution facility. REPEAT and IF will be 
discussed further below. Other control statements provided 
are CONTINUE, EXIT, GOTO and CALL. CONTINUE initiates the 
next iteration of the enclosing control structure. EXIT 
leaves the control structure. GOTO is peraitted, but not 
into a control structure from outside its range. CALL will 
not be discussed further, as issues of argument types and 
matching have not been decided. 

r 

REPEAT FOR EACH <?trans, ?agt> IN TR.TRANS-AGT; 
DB.AGENT += ?agt 

(HASCON TR.COK(?trans) 
HASTERR TR.TERR(?trans)); 

END; 

REPEAT FOR ?trans WHERE TR.COH(?trans) > .10; 

REPEAT FOR EACH ?agent IN TR.AGENT, BY ?agent; 

Figure 19: Repeat Statements 

Repeat Statemegt. The general form of the repeat statement 
is: 

• REPEAT FOR EACH selection-vary  selection-vector IN exp 

as illustrated by the first example of figure 19. This form 
works well as long as "exp" is not a selection expression. 

If it is, there is unnecessary redundancy, e.g., 

• REPEAT for ?trans IN (?transx WHERE 

15 



The redundancy can be avoided by the elision illustrated in 
the second example. The third example shows optional 
ordering. 

r 

IF HASCOM (?agent) ; 
IS < .05 THEN HASCON (?agent) = .05; 
IS < .10 THEN HASCON(?agent) _ .10; 
IS OTHER THEN HASCOM (?agent) = .15; 
END; 

IF COUNT (HASTERR (?agent)), HASCON (?agent); 
IS < 5, < .05 THEN HASCOM (?agent) _ .05; 
IS > 5, < .10 THEN HASCOH(?agent) = .10; 
END; 

IF HASCON(?agent) IS > .05 THEN GOTO NO-CHANGE; 

Figure 20: Conditional Statements 

Conditiona' Statement. The conditional execution statement, 
"IF", represents a merging of the traditional "IF" and 
"CASE", with a touch of decision table. Examples are shown 
in Figure 20. The result is a very regular form more easily 
read than traditional nested forms. Consider the first 
example. Given only IF-THEN-ELSE, than something like the 
following would be required (no attention is paid here to 
terminators) : 

IF HA5COM (?agent) < .05 
THEN HASCOM(?agent) _ .05 
ELSE IF HASCON (?agent) < .10 

THEN HASCOFi (?agent) = .10 
ELSE HASCON (?agent) _ .15 

Similarly, the second example, which illustrates the simul-
taneous testing of multiple variable conditions, might be 
coded more traditionally as: 

IF COUNT (HASTERR (?agent) ) < 5 
AND HASCOPi(?agent) < .O5 

THEN HASCOM (?agent) = .05 
ELSE IF COUNT (HASTERR (?agent) ) < 10 

AND HASCOM (?agent) < .10 
THEN HASCOM (?agent) = .10 

The traditional form is included for simple tests. 
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This completes the language description portion of the 
paper. There Statement types not addressed here are either 
not yet definitionally stable, or fall into the excluded 
"systems-oriented" category. 

6.0 DA fl fQDEL: DESCRIPTION AND DISCUSSION 

C 
The language can be applied to a variety of models. For 
example, it can be applied to the rough model given 
originally by the device of "immediately translating" the 
value of every term from the data base object ostensibly 
referred to, to its name. Thus, referring to figures 5 and 
6, the value of the term PART is defined as the set of names
of objects in the set PART. 

Probably the best model to choose, however, is one directly 
implied by the language. For one thing, it makes reading a 
program that much simpler.. For another, the semantics of 
the above language are rather complex; anything in the 
direction of simplification is useful. This suggests that a 
set model be used (which can be represented as a network if 
desired, see below). 

The specific model chosen is related to that used in SETL 
[20], and is heavily influenced by conceptual model concepts 
found in [7, 16, 13, and 247. Some traditional conceptual 
model constructs are transformed for syntactic reasons. In 
general, the transformations are defended by taking the 
position that conceptual model constructs have two purposes: 

• To document what information is present (or needed) in a 
data base. 

• To dictate constraints on implementations (object 
behavior). 

Thus given a syntactically inconvenient construct, it is 
reasonable to explore what functions it seems to fulfill 
(not always an easy task), and to determine if they might be 
provided by other means. 

The model is introduced below. Descriptions of particular 
features are interspersed with discussions of why certain 
features are incorporated or omitted. 

The Basic Model. The specific model chosen consists of four 
kinds of objects: scalars. relationships (also called 
vectors), sets of scalars ("scalar sets"), and sets of 
relationships ("relationships sets" or "vector sets"). 
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At least three built-in sets are provided: NUMBERS, STRINGS, 
and BOOLEANS. Each user-defined scalar set must be 
constrained to be a subset either of one of the built-in 
sets, or of some other user-defined set, in a non-circular 
fashion. (The members of) each vector set must be 
constrained a) to be of a particular degree, and b) to draw 
participants in particular positions from particular (sin-
gle) source sets. 

There are two kinds of primitive actions: add an object 
(scalar or vector) to a set, and delete an object from a 
set. The deletion of an object from a set causes the 
deletion of any relationships in which it participates as a 
member of that set. 

§tati2 and Dynamic Sets. Dynamic sets are "normal" sets. 
Their content is established and modified by assignment 
statements, and must be finite. The content of static sets, 
built-in or user-defined, is determined by definition, can 
be infinite, and is established at the time a data base is 
created. It may not be modified by assignment, but only by 
modifications to definitions (as permitted). One might 
specify that the content of a static set be defined by an 
expression, referencing only other static sets, in a 
non-circular manner. However, such an expression must be 
permitted to represent an infinite set, and special 
definitional forms would be useful (e.g., to limit string 
syntax) . 

Static sets have several uses, the Lost important of which 
is the avoidance of unnecessary code. Normally, before an 
object can be linked into a given relationship, it must be 
separately placed into a set over which the relationship is 
defined. For some kinds of objects, however, such as 
measures, the fact that they are in a given set (e.g., 
WEIGHT) is relatively uninteresting, so that it makes sense 
to define the entire set ahead of time. Thus one can write 

• DB.PART +_ "12345" (HAS_WGT 500); 

without worrying about explicitly adding 500 to the set 
WEIGHT. 

Since the model is 
use of static .sets 
tures, when necessary. In 
as a relationship between 
which the array values are 
n by in array of arbitrary 

intended to be used for all data, another 
is in modelling traditional array struc-

general, an array is represented 
a static set and the set from 
drawn. For example, to model an 
integers, one might define: 

a. a static set M of the first m integers 
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b, a static set N of the 

c. a static relationship 

d. A relationship ARRAY 
integers. 

A final use of static sets is 
of other sets. This is a 
required integrity function 
additional concepts. 

first n integers 

NM of their cross product 

mapping from NS to the set of 

in constraining the membership 
natural way of providing the 
without the introduction of 

Dezived Sets. Algorithmic function definitions are to be 
included in the language, although they are not described 
here. As recognized in [23], the power of the language 
makes it worthwhile to also provide a facility for the 
definition of derived sets by single expressions. Two cases 
may be identified: a) when the derived sets are explicitly 
identified as subsets of other sets, and b) when they are 
not. In the first case, the derived sets may be used as 
relationship participant constraints. 

4(
 
EMPLOYEE) 

--~rBAS !lOOD1 

I 
MOOD 

Figure 21: Multi-Context Objects 

Some Implications. The model described above has some 
discomforting aspects, particularly from a data base point 

of view. First, it implies that the set of objects in a 

data base is infinite. Second, it allows a data base such 

as that shown in Figure 21, illustrating that, in general, 

it is only from the name of a relationship that one can 
discover the context in which the elements are being 
related. Thus "BLUE" is being related as a COLOR to the CAR 

"1234" via the relationship BAS_COLOR, .and is being related 

as a MOOD to the EMPLOYEE "1234" via the relationship 
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"HAS MOOD". Finally, the model probably appears overly 
mechanistic; it has relatively feW semantic overtones, and 
is missing some familiar "conceptual model" constructs. 

With respect to the "infinite data base" problem, it should 
be pointed out that a) the infinite sets are not stored, and 
b) the uses of infinite sets in expressions are strictly 
limited. 

The second problem, regarding contexts, is visual only, as 
one cannot generally obtain information about the set of all 
relationships in which a particular object participates. 
That being the case, the problem can be resolved by the 
following diagramming rules, which restore the pictorial 
simplicity of the original model: 

1. Depict only members of dynamic sets, and those members 
of static sets which participate in some vector 
(relationship). 

2. Display multiple representatives of the same object, 
one for every set membership by which it qualifies for 
display (by rule 1). (Note: in the context of addi-
tions to the model below, this should read, "one for 
every base-set membership ... ") 

3. connect nodes representing relationships to the appro-
priate representatives of their participant objects. 

(These rules would cause the objects shown in. Figure 21 to 
appear as expected according to the original model..) 

the final cause of intuitive discomfort, the lack of seman-
tic constructs, requires more discussion. In the sections 
immediately following, the reasons for omitting some famil-
iar constructs are explored, and some additions are made to 
the model to compensate. 

WMt if nttttes. Many models explicitly distin-
guish objects representing "entities" from other scalars 
(e.g., "attribute values", character strings, etc.). Gener-
ally, the names of entities, if they have any, cannot be 
printed; entities are located via other (non-entity) scalars 
to which they are related. Often at least one entity must 
participate in any relationship. While there is no consen-
sus on what entities are [16], they seem to have several 
purposes in a data model. First, "philosophically", they 
mirror the consideration that real world objects are differ-
ent from their real world identifiers. Thus for the sake of 
fidelity they are represented by blank objects, or special 
identification systems, etc. This may be justified, howev-
er, it can be pointed out that names are in fact the. medium 
by which things are represented in data processing systems, 
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automated or not. 

There are, however, more practical applications of the 
concept. First, entities are useful when existing identifi-
cation systems fail. For example, a) there may be several 
alternative systems in use for a type of real world object, 
no one of which is universal, or b) the same object must be 
seen as a member of several unrelated typesets, each with 
its own naming system, such as employee and stockholder 
[17). In such cases, the imposition of a new identification 
system, local to a data base, but universal within that data 
base, has some distinct advantages. Second, the distinction 
between entities and other types of scalars can serve the 
same purpose as the static / dynamic set distinction 
provided here. 

The use of entities, however, is linguistically awkward. It 
has the effect of constantly forcing oblique references to 
objects, e.g., 

• HAS TERR (?agent WHERE AGT_NAAE (?agent) = "Smith") 

instead of 

• HAS_TERR ("Smith") 

Things become even more awkward in the context of multiple 
data groups, because .an object would be represented as a 
different entity in each group (which also seems to remove 
some of the philosophical justification). One could not for 
example, state: 

• DB.AGSNT += TR.AGENT; 

but rather would require something like: 

• FOR EACH Tagent IN TR.AGENT; 
DB.AGENT += WK.TENP = NEEW_ENT(DB); (a built-in fn) 
DB.AGT_NANE (WK.TESP) = TB.AGT_NANE (?agent); 

Given a) the linguistic inconvenience, and b) the fact that 
the model is intended to be used for all data (not just 
"data base data"), it is clear that though the concept of 
entity can be useful, it cannot constitute a basic element 
of the model. To provide the functions of entities, when 
needed, two additional constructs are provided: 
"surrogates", and "propagation subsets". 

The concept of surrogate is adapted from [12]. An addi-

tional built-in set, SURROGATE, is provided, being an 

infinite set of distinguished objects having the form 

•real-number, together with a built-in function 
"NEWSURR(databasename)". Then if entities are desired in a 
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data base, the user may define a set called ENTITY (or 
anything else), constrained to draw its members from SURRO-
GATE. For consistency with the language, surrogates (the 
members of SURROGATE) are printable.. 

Propagation subsets are related to similar concepts in [7, 
13, 24]. The sets which have been considered so far will be 
referred to as "base sets". If a set Si is declared to be 
not a base set, but a "propagation subset" of some other set 
S, it has the effect that the addition of an object to Si 
implicitly causes its addition to s, if not already there. 
The constraining set of Si is the same as the constraining 
set of S (unless S is itself a propagation subset, etc.). 
However, relationship participants can be constrained to 
propagation subsets. 

Propagation subsets are useful, in general, as implementa-
tions of the "generalization hierarchy" of [24], but they 
are not absolutely required except in an entity context. 
When entities are not used, the equivalent function can be 
obtained by: 

a. defining some classifying relationships (e.g., 
ACCOUNT TYPE) 

b. defining some derived sets based on the classifying 
relationships (e.g.., CHECKING ACCTS, SAVINGS ACCTS) 

c. using the derived sets as relationship partic-
ipation constraints. 

With entities, however, a sufficiently large number •of 
objects belong to a single generalization hierarchy, that 
the lack of explicit subsets is too unwieldy, both 
definitionally and operationally. 

ghat appeaed to Attributes. Many models considered "con-
ceptual" distinguish strongly among various types of associ-
ations. Some of the distinctions made have a semantic 
flavor (e.g., event associations, attribute associations), 
while others seem structurally based (e.g., only binary 
relationships. allowed, others handled as entities). While 
semantic distinctions may provide interesting information, 
they are not included in the model, for two reasons. First, 
there is no consensus on what categories are useful, and 
what they represent. (This may be because such determi-
nations are more properly made in the contest of "knowledge 
base" systems.) Second, distinctions in constructs gener-
ally imply distinctions in syntax, and hence complexity. 

As an example, consider attribute associations. While 
attributes have a flavor of one-sidedness, and a seeming 
purpose of describing one of the participants, these are 

T 
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clearly rather subjective notions j15], especially in our 
non-entity environment. Moreover, if attributes were 
included in the model, they would be syntactically annoying; 
given an additional database construct, presumably there 
should be an additional language construct, e.g.: 

• ?agt.SALARY = 100 AND NANAGER(?agt) = "Jones" 

instead of 

• SALARY(?agt) = 100 AND NANAGER(?agt) = "Jones" 

Given the lack of :theoretic justification, the syntactic 
problem is considered decisive. With respect to represent-
ing structurally different relationships by different 
constructs, it is very difficult to understand why this 
should be done. The subject will not be pursued here, 
except to note that the motivation should not be one of 
reference syntax; the language forms described above allow 
both n-ary relationships, and relationships participating in 
other relationships, to be referenced without difficulty. 

Why Not Use "Natural" $eletiogship Names. The model 
requires that all members of a relationship set draw partic-
ipants in the same role from the same set. In other, more 
"natural" models, the same association name can be used to 
relate many kinds of objects. For example, CONTAINS might 
relate both OFFICES to FURNITURE and DEPARTMENTS TO EMPLOY-
EES. This is indeed the way associations are referenced in 
the "real world", where contexts can be implicit. In an 
accessible data model, however, contextual information is 
needed both in the data, and in references to it. 

With respect to the data, consider first relationships 
between non-surrogates. Here only some sort of relationship 
name or name adjunct can indicate which objects are being 
related, e.g., which CONTAINS relationship pertains to 
OFFICE "15C" and which to DEPARTMENT "15C". Next, even in 
the case of surrogates, each representing a single object, 
there is a problem. Consider a HAS RESPONSIBILITY relation-
ship, linking an object representing both an employee and an 
officer o£ a club to a task. There must be a way of indi-
cating in what role the person has that responsibility. 

References to relationships must also include contextual 
information, to indicate what specific relationship and 
selection variable domains are intended. Such contextual 
information can be provided in many ways. The use of 
distinguished relationship names has advantages both of 
succinctness, and of consistency with what is clearly 
necessary in the data itself. While it might be argued that 
unique relationship names are difficult to remember, this 
problem can be alleviated by establishing conventions for 
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relationship naming. For example, relationships between a 
and Y might normally be named "HAS Y", with "% HAS_Y" 
reserved for cases where more specificity is needed. 

Sumaary. In summary, it might be observed that in the 
process of integrating data base accesses into a classical 
HLL framework, both the language forms and the data 
constructs undergo some adjustment. 

7.0 DATA DEFINITION 

The discussion of data definition will be very brief, and is 
intended only to provide a certain amount of perspective on 
the types of assumptions being made. 

Definition Bata Groups the language is assumed to exist 
within a development / execution environment incorporating 
many atomic network data groups, among them application data 
groups, and definition data groups. Each global data group 
has an associated definition data group specifying such 
things as: 

• The names of, and membership constraints on, its scalar 
sets. 

• The names of, and participant constraints on, its vector 
sets. 

• Definitions of derived sets. 

• Other integrity constraints on data base content, 
expressed in either specialized form (for frequent 
constraints), or as general predicates. 

Definition information is expressed using a prescribed group 
of scalar and vector sets appropriate to data definition, 
and is entered using normal means of accessing data groups. 

Definitions 
in 

Application programs. Application programs 
are also assumed to contain definition information, namely,: 
a) declarations of subsets of global data groups used in the 
program, and b) declarations of local data groups. Declara-
tions look like factored assignment statements, and are 
considered to create local definition data groups, loaded at 
compile time. For example, the following statements might 
be used to define a local data group named TEN?: 

• DCL TEMP SCALARS = TRANS (CONSTRAIN = INTEGER), 
AGENT (CONSTRAIN = CHAR); 
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• DCL TEMP RELS = TR AGT (PART = TRANS (::INROLE = 1), 
AGENT (::INROLE = 2)); 

Derived sets and functions can also be defined, within a 
program, to span data groups, for example: 

• DEFINE BAD_SUPPLIER = ?supp WHERE DB.DELIVBRY_WEEKS ... 

• DEFINE GRANDCHILD(n) = DB.CHILD (DE1.CHILD(?x)) 

8.0 DIRECTIONS FOR FQNT! HER WOBK 

As should be obvious, the above represents only a small step 
toward the goal of language integration. Some obvious next 
steps in the specification area include: 

• Completion of the language specification to include 
systems-oriented aspects. What is needed is an appro-
priate model of the structure an.d dynamics of an appli-
cation system, in the context of which decisions, such 
as how to handle process initiation, messages, trans-
action boundaries, etc., can be made. 

• A considerably more precise expression of language 
semantics, and the imposition of restrictions on 
expressions, both to ensure "computability". 

Some work has been completed in these areas and should be 
available shortly. In addition, a considerable amount of 
work is needed in understanding how to apply current tech-
niques in optimization o€ HLLs, data retrieval, and data 
storage design, to the language. 
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