
V3LLNL/Y4i Jiue IL/iw

t

AN ATOM!C NETWORK PROGRAMMING LANGUAGE

PAULA S. NEWMAN

1977 LOS ANGELES SCIENTIFIC CENTER REPORTS 1979 LOS ANGELES SCIENTIFIC CENTER REPORTS

+6320.2686 April 1977
T. LANG, C. WOOD & E. B. FERNANDEZ, Database

• Buffer Paging in Virtual Storage Systems (24 p.)

6320.2687 April 1977
R. C. SUMMERS & E. B. FERNANDEZ, A System
Structure for Data Security (41 p.)

+6320.2688 June 1977
T. LANG, E. NAHOURAII, K. KASUGA & E. B.
FERNANDEZ, An Architectural Extension for a
Large Database Incorporating a Processor for Dick
Search (30 p.)

G320.2689 July 1977
C. WOOD, E. B. FERNANDEZ & T. LANG, Minimi-
zation of Demand Paging for the LRU Stack Model of
Program Behavior (21 p.)

6320.2690 September 1977;
B. DIMSDALE, A Geometric Optimization Problem
(20 p.)

. +6320-2691 September 1977
B. DIMSDALE, Convex Cubic Splines (32 p.)

6320.2692 September 1977
B. DIMSDALE, Convex Cubic Splines 11 (18 p•)

6320.2693 September 1977'
E.. B. FERNANDEZ. H. KASUGA, Data Control in a
Distributed Database System (26 p.)

1978 LOS ANGELES SCIENTIFIC CENTER REPORTS

6320.2694 March 1978
S. JUROVICS, An Investigation of the Minimization
of Building Energy Load Through Optimization
Techniques (28 p.)

6320.2695 November 1978
L. LICHTEN, An Approach to Solving Surface
Connectivity Problems in Computer-Aided Design (41
p.)

G320-2696 November 1978
C. WOOD, R. C. SUMMERS, E. B. FERNANDEZ,
Authorization in Multilevel Database Models (28 p.)

6320.2697 March 1979
P. NEISWANDER, A Review of the National Bureau

of Standards Loads Determination Program (NBSLD)
(12 p.)

G320-2698 March 1979
C. WOOD & E. B. FERNANDEZ, Authorization in a
Decentralized Database System (35 p.)

G320-2699 June 1979
S. A. JUROVICS, Solar Radiation Data, Natural
Lighting, and Building Energy Minimization (20 p.)

G320-2700 August 1979
A. INSELBERG, An Integral Equation Arising in a
Convective Heat (Mass) Transfer Problem Through a
Boundary Layer (19 p.)

6320-2701. September 1979
G. J. SILVERMAN, D. W. LOW, Construction of
Optimal Synthetic Weather Data by Convex Com-
bination (14 p.)

1980 LOS ANGELES SCIENTIFIC CENTER REPORTS

6320.2702 March 1980
K. EWUSI-MENSAH, Criteria for Decomposing an
Information System Into Its Subsystems for Business
Systems Planning (26 p.)

G320-2703 March 1980
K. EWUSI-MENSAH, Computer-Aided Modeling and
Analysis Techniques for Determining Management
Information Systems Requirements (30 p.)

G320-2704 June 1980
PAULA S. NEWMAN, An Atomic Network Pro-
gramming Language (29 p.)

6320-28755 April 1980
Compiled by KATHERINE HANSON, Abstracts of
Los Angeles Scientific Center Reports (104 p.)

The availability of reports is correct as of the printing date of this report.

Appeared in an outside publication. Not available in Scientific Center report form. Please refer to the list of outside publications on
the inside back cover for availability of reprints.

Copies of report are no longer available from the Scientific Center.

b

IBM LOS ANGELES SCIENTIFIC CENTER REPORT NO. G320-2704

June 1980

AN ATOMIC NETWORK PROGRAMMING LANGUAGE

Paula S. Nefan

4

IBM Corporation
Los Angeles Scientific Center

9045 Lincoln Boulevard
Los Angeles, California 90045

a

ABSTRACT

There have been many recent studies of approaches to reduc-
ing the fragmentation of implementation languages into
programming languages, data manipulation languages, command
languages, etc. The purpose of this paper is to present
some current results of one such study. The results include
the definition of a significant part of a language which
completely integrates data base accessing into a traditional
programming language framework, and the definition and
justification of a data model which makes such integration
feasible. The model used is an instance of what is called
here an "atomic network", a network in which each fact is
represented by an individual element.

r

1.0 INTRODUCTION

An application system is normally implemented using a
combination of languages, such as programming languages,
data manipulation languages, and languages controlling such
systems-related functions as process initiation,
inter-process communication, etc. This separation of
linguistic function is due to a combination of historical
accident, and considerations of portability and standardi-
zation. As data-base and systems-related functions become
more significant, the fragmented approach becomes less
justifiable, and a major source of unnecessary complexity.

Accordingly, there has been considerable investigation into
methods of integrating additional functions into existing or
new programming languages. Most efforts focus on integrat-
ing either data-base-related functions, such as [4, 23, 8],
or system-related functions, such as [9, 6], but a few, such
as [19, 10] address both issues. (Note: the above refer-
ences are not intended to be exhaustive, but rather repre-
sentative) .

Th&atomic network programming language, currently incom-
plete, is intended to be an instance of the latter
direction. Integration of data base manipulation is accom-
plished by using a single, directly-addressed, data model
for all data. Distinctions between classes of data are made
on the basis of differences in declared scope and lifespan,
rather than on the basis of differences in accessing syntax.
Also, traditional ULL statement types are adapted for
consistency with a database environment. Integration of
systems-related function is obtained by a suitable execution
environment definition, and language forms for transaction
handling and inter-process communication.

The data model used is a version of what is called here an
"atomic network", meaning any kind of network model in which
each fact is represented by a separate object. (Atomic
networks thus subsume structures called variously "semantic
networks", "functional models", "associative networks",
"entity-relationship models", etc.) The integration of
accesses against such a base into a programming language can
be done very smoothly, by relating the "entities" and
"associations" of the model to sets of scalars and sets of
vectors, and then to the variables and functions of clas-
sical high level languages.

In the past, atomic networks have more often been studied a)
as foundations for artificial intelligence "knowledge
bases", and b) as "conceptual models" of data bases imple-
mented using other structures, than as accessible structure.
some relatively early efforts are represented by [21, 22,
11]. Only quite recently, in such efforts as DAPLE% [23),

TASL [14], FQL [1], FST [2], and the process specification
language of [10] has there been an explicit recognition of
their potential as a base for high level accessing syntax.

It should be noted, however, that while exploitation of the
full chain, i.e., networks --> sets --> language is rela-
tively new, many aspects of the chain are not new. As far
back as 1962, the creators of SIASCRIPT recognized that data
associations could be referenced as functions [18].
Furthermore, SETL [20], developed in the early 70's, defin-
itively established the second link in the chain.

The purpose of the paper is twofold. The primary purpose is
to introduce the data accessing and algorithmic aspects of
the language. While many constructs are shared with the
efforts referenced above, especially [23] and [20], the
language is unique in the extent of the integration, in the
balance achieved between succinctness and readability, and
in approaches taken to specific problems. The secondary
purpose of the paper is to introduce the model, and to
explore, to some extent, the interplay between model and
language.. While alternative atomic networks, and individual
components, have been compared with respect to utility for
conceptual modelling [3, 15, 16], there has been little
discussion o£ the implications of those alternatives for
accessing language.

We will begin with the discussion of an informal data model,
sufficient to motivate the language (section 2). The major
procedural constructs of the language are presented in
sections 3 through 5. Following this the actual model used
is defined and justified (section 6), and some information
is provided about data definition (section 7). This slight-
ly inverted order simplifies the presentation, as justifica-
tion of the model is partially based on linguistic consider-
ations. (The language sections can be reread following the
description of the actual model to verify the connection.)

2.0 IHFOR!!AL DATE PIODEL

r

PART

12345

Figure 1: "Entities"

COLOR

blue V.

An informal, intuitive data model which might be manipulated
by the language is given by the examples of figures 1
through 3. what might be thought of as entities (Figure 1)
are represented by nodes identified by a combination of
typeset name (PART, COLOR), and member name ("12345",
"blue") .

r

PORT

12345

PART

 HAS_SUPPLIBR~

(a)

12345
RAS_COLOE

(b)

SUPPLIER

AAA-PARTS

1
COLOR

blue

Figure 2: Relationships

Relationships (Figure 2) are represented by relationship
nodes identified by a combination of typeset name, and
participant identifiers. Numbered arrows egagating from the
relationship nodes indicate the ordered participants. Thus
Figure 2a represents the "HAS-SUPPLIER" relationship between
the PART "12345" in the first role, and the SUPPLIER
"AAA-PARTS" in the second. Inverse (permuted) relationships
may be defined. No distinction is made between "attribute"
relationships and other relationships (Figure 2b).
Relationships may participate in other relationships (Figure
3a), and relationships say be n-ary (Figure 3b).

The integrity rules assumed are:

• Names of members within a particular entity typeset must
be drawn from a particular predeclared set of names
(which may be "infinite").

• All relationships within a particular relationship
typeset must have the same degree, and must connect the
same types of objects.

It should be remembered that the above model is intended
only to make the language examples comprehensible; the
actual model used is defined further on.

3

PART

12345

PART

HAS_SUPPLIER
SUPPLIER

1

B! CONTRACT

CONTRACT

6789A

(a)

12345
SUPPLY

1'
WAREHOUSE

EASTERN

(b)

ALA-PARTS

SUPPLIER

AAA-PARTS

Figure 3: More Relationships

3 .Q E PRESSIONS

expressions are the ®ost important construct of the
language. They are used to express assigned values, repe-
tition specifications, conditions, and on-line queries.

Expressions are built of ljterals, tygeset re€erences,
operators, fugctoh references, and selection cjauses. Each
of these constructs viii. be examined in turn below.

4

r 1

"12345"
25.39
TRUE
•12345
<"12345", "12346">
(_ "12345", "12346"_)
(_<"12345", "AAA_PARTS">_),

<"12346", "PARTS_INC">_)

literal alpha scalar
literal numeric scalar
literal boolean value
literal surrogate
literal vector
set of scalars

set of vectors

Figure 4: Literals

Literals. Figure 4 illustrates various types of literals
and sets of literals. Note the distinguished parentheses,
"(_", used to enclose sets; curly brackets would be prefer-
able, but are often unavailable. (The term "surrogate",
introduced in [12), is now fairly well known; its adapta-
tion here is discussed further on.)

PART

12345

12346

HAS-SUPPLIER

HAS-SUPPLIER

Figure 5: SUPPLIER Data Group

SUPPLIER

AAA-PARTS

SUPPLIER

AAA-WIDGET

SUPPLIER

PARTS-INC

TYPeset Refereaces. Figure 6, referencing the sample
database depicted in Figure 5, illustrates typeset refer-

ences and their meaning. The value of a typeset reference

S

PART

HAS_SUPPLIER =___>

(_"12345", "12346_)

(_<"12345", "AAA PARTS">,
<"12345", "AAA WIDGETS">,
<"12346", "AAA WIDGETS">,
<"12346", "PARTS_INC">_)

Figure 6: Typeset References

is the set of literal names of members of the set. An empty
set has the literal value NULL.

In fact every expression in the language evaluates to one or
more literals. This interpretation facilitates the use of a
primary mechanism for the blending of database and program-
ming syntax, namely, that t1pesets (which may be restricted
to contain only one member), ate tag variables of the
program.

It should be noted that while the language is set-based, the
concept of set used is very primitive. No operational
distinction is made between a scalar, e.g., "12345", and a
set containing a single member, e.g., (_"12345"_);. Also,
sets do not have structure, in that, sets may not have other
sets as members.

HAS _SUPPLIER ("12345")
> (_"AAA-PARTS", "AAA-WIDGETS" _)

HAS_SUPPLIER((_"12345", "12346"_))
===> all the suppliers

HAS_SUPPLIER(PART)
===> all the suppliers

HAS -SUPPLIER ("12345", ?)
==> ("AAA-PARTS", "AAA-WIDGETS".)

HAS SUPPLIER (?, "AAA-PARTS")
> "12345"

HAS SUPPLIER ("12347")
> NULL

Figure 7: Function

Function References. In common with SETL [20], DAPLE% (23),
and others, the recognition that associations can be refer-
enced as explicit (stored) functions is exploited. In
general, given a relationship typeset R whose members are of
degree n, then a reference of the form:

• R(E1, .•.., Em-1, ? , Em+1, En)

has the meaning "the unique literals denoting objects
participating in the mth role of a member of R whose other
participants belong to the sets denoted by E1, E2, Em-1,
Em+1,, En." If the unknown participants are in the nth
role, then the structure can be abbreviated:

• R(E1, ..., En-1)

Figure 7 illustrates instances of function references.: Note
that: a) multi-sets are collapsed, b) the second and third
examples evaluate to the unog of the expressions
HAS SUPPLIER(12345) and HAS SUPPLIER(12346), and c) the
application of a function to a value for which it is unde-
fined gives the result NULL.

r -

HAS SUPPLIER("12345") INTER RAS_SUPPLIER("12346")
===> "AAA-WIDGETS"

"AAA-PARTS" ISIN HAS_SUPPLIER("12346")
= > FALSE

HAS SUPPLIER CTNS <"12345", "AAA-PARTS">
==_> TRUE

HAS_SUPPLIER:("12345","AAA-PARTS")
===> TRUE

1.1 * COST (" 12345") > 10.00 =__> ?

Figure 8: Operators

v

Upgnt4Ts._ The operators provided are as follows:

UNION, INTER, MINUS

I5IN, CTNS, EQ, HOT3Q

• set operators:

• set comparisons:

• value comparisons:

• string operators:

= > < etc.

i i others?

7

2

arithmetic operators: + - etc.

• boolean operators: AND 08 NOT

Set operators and comparisons take any expressions as
operands. The other operators require that at least one
operand be scalar in intension, i.e., detectable at compile
time to be scalar by an examination of declarations. Such
operators applied to two scalars produce a scalar; applied
to a scalar and. a set they produce a set. In general,
operators require "appropriate" operands, e.g., concat-
enation may not be applied, to numbers. As the traditional
operator aspect of the language is not a focal point, no
decisions have been made as yet with respect to "appropriate
operands", evaluation order, and implicit conversions.

Figure 8 illustrates the use of operators. Note the use of
a shorthand form of CTNS, ":" It can be used with either
entity sets or relationship sets, and permits a
predicate-like notation.

Built-in Functions. While the general
functions will not be considered here,
on sets as a whole, such as COUNT,
discussed to illustrate a particular set
solutions provided.

topic of built-in
functions operating
AVG, SUN, will be
of problems and the

Consider the problem of obtaining a number representing the
average cost of parts, in a single expression, assuming the
schema shown in figure 9. The form AVG(COST(PART)) will
not do. Based on earlier definitions, the term COST(PART)
obtains a set without any duplicates, whereas AVG would seem
to require a multi-set. Furthermore, AVG($), I a set,
obtains the set resulting from the application of AVG to
each member of I, which is clearly not what is desired.

"Functional modification" will be introduced to deal with
the first problem. If F is a function, then NSF represents
a modification N of F. A NONUNIQUE modification might be
defined as follows: if F(A), before the elimination of
duplicates, gives (_at, a2, ..., an_) (i.e., for some i, j,
ai = aj), then NONUNIQUE~F(A) gives <1, a1>, <2,a2>, etc.
Using this convention, two forms of aggregate functions
might be defined, one operating on scalars, and one operat-
ing on pairs, e.g., AVG, and AVG2. (Note: Another useful
functional modification might be INVERSE.)

The second problem can be solved by a variety of means.
Possibly the simplest is to enclose arguments intended to be
processed as a unit in some distinguished parentheses, e.g.,
brackets. Thus to find the average salary of employees, one
would write: AVG2[NONUNIQUEmSAL(ENP)], or, if it can be

8

assumed that NONUNIQUE is the most common of the functional
modifications, AVG2[TSAL(EM?)].

HAS-MGR
r

(HAS-EN?)

r

EMP 4 II HAS_SKILL SKILL

SALARY SAL

Figure 9: EMPLOYEE Schema

r

?emp WHERE SAL(?eap) > 10.00
___> The employees with salary

greater than 10.00

?emp WHERE SAL (?eap) > SAL (HAS_MGR (?emp))
___> The employees earning more

than their managers

<?enp, ?sal> WHERE SAL(HAS_MGR(?emp)) _ ?sal
___> Employees paired with their

managers salaries.

<?emp,, SALARY(?eap), ADDR(?emp)> WHERE
?eap ISIN EM?

Figure 10: Selection

Selection Clauses. Selection clauses function both as
ordinary programming language expressions and an extremely
powerful and comprehensible linear query language. Consider
the first example of figure 10, referencing the EMPLOYEE
data group depicted in figure 9. The meaning of the
expression is: "What are the values of selection variable
'?emp' for which selection clause 'SAL(?emp) > 10.00' has
the value TRUE?" Similarly, the third example requests all

pairs .of selection variables <?emp, ?sal> which together
satisfy the selection clause.

At any particular point in time a selection variable repres-
ents at most a single scalar or vector. Each selection
variable must have a finite range. The range may be given
explicitly, by a term such as "?var ISIN setname", or may be
implied by an associated relationship typeset name. For
example, ?emp is known to range over the set EM? not because
of its name, which is arbitrary (?abc would do as well) but
because the SAL relationship is defined only between members
of EM? and members of SALARY. (The implied range may also
be the intersection or union of one or more sets.)

This is a unique approach made feasible by the requirement
that relationships draw their participants in specific
positions from specific sets. The most important advantage
is that it allows the use of several variables having the
same range in a straightforward yet succinct way. This
requirement is discussed further in conjunction with the
model, below.

r

?mgr WHERE HAS _RE?:(?mgr, ??emp)
AND HAS_SKILL(??emp) EQ NULL
===> Managers responsible for

employees with no skills

?emp WHERE HAS_SKILL(?emp) EQ SKILL
===> Employees having all skills

?mgr WHERE RAS_EMPS(?mgr) ISIN
(?emp WHERE SAL (?emp) > SAL (HAS MGR(?eap))
===> Managers, all of whose employees

earn more than they do

Figure 11: Quantification Equivalents
L j

Quagtif}cation. Existential quantification is indicated by
the use of a double question mark, e.g., ??string. This is
not necessary for the query form, as such quantification can
be inferred for any selection variable not appearing to the
left of "WHERE". However, selection variables can function
as iteration variables in loops (see below), so in a
programmming context the assumed scope of the variable must
be made explicit.

c

;r

10

The capabilities provided by explicit universal
quantification can be handled adequately by set comparison.
Figure 11 provides examples of the use of quantification.
These examples are particularly good illustrations of the
balance of succinctness and clarity achieved by the
language.

7

4.0 ASSIGNMENT STATFggNTS

the language being described is not intended as a "DM1.", to
be embedded in some existing language, Such combinations
must always preserve a certain amount of fragmentation.
Instead, the flavor of HLL syntax is preserved, but state-
ment forms are modified to suit the combined database /
programming environment.

Thus a basic assignment statement with the traditional form
y", % a set, and y an element or set, is included.

All necessary set manipulations can be performed using the
basic assignment statement. Nowever, some additional forms,
described below, are introduced.

r

Figure 12: AGENT Data Group
L

Extended Assignment. Figure 13, referencing
shown in figure 12, illustrates the use of
extended assignment operators. The form "S +_
insertion, and is equivalent to "% = K ONION Y
"K -= Y" performs deletion, and is equivalent
MINDS Y.

the schema
basic and
Y" performs
" the form
to "% =X

11

AGENT = (_"Smith", "Jones"-);

AGENT += "Reilly";
> AGENT = AGENT UNION "Reilly";

AGENT -= "Jones";
> AGENT = AGENT MINUS "Jones";

Figure 13: Assignment
I-

This extension reflects the spirit of the language; since

sets are things one naturally adds to and deletes from, the

change ensures that the readability of HLL's is preserved in

the database environment.

Other assignment operators might be introduced to indicate

what is assumed by the programmer about the "left of equals"

set before execution of the statement, as per figure 14.

Such operators would further clarify intent, and foster
integrity (i.e.., the enclosing transaction would not succeed

if the assumptions were untrue).

OP SYMBOL "LEFT OF EQUALS" ASSERTION

Equal = Don't Care
== Empty (Init)
/= Non-Empty (Replace)

Add += Don't Care
++= Doesn't contain any right-of-eq

Delet -= Don't Care
--= Must contain all right-of-eq

Figure 14: Other Assignment Possibilities

Functjonal jgnment. Figure 15 illustrates the use of
functional assignment. It is used in SETL (20) and is,
obviously, the set or database equivalent of array or
structure eleneut assignment. In the examples shown, the
meaning is probably self-explanatory. To illustrate the
more general case, if R is, for example, a ternary relation-
ship, and X and Y are expressions, then

R(X, Y) += Z;
===> R += <?x, ?y, ?z> WHERE ?x ISIN X

AND ?y ISIN Y AND ?z ISIN Z;

S

Y

12

HASCOM("Smith") = 1.1 * HASCOM(°Smith");
___> Increase Agent Smith's commission

by 10 percent.

HASTERR("Smith") +_ "northwest";
___> Add "northwest" to Agent Smith's

territories.

HASTERR("Smith") -= HASTERR(AGENT MINUS "Smith");
___> Remove any territories from Smith

also covered by another agent.

Figure 15: Functional Assignment
~-- J

while

R(%,Y) = Z;
___> R -_ <?x, ?y, *> WHERE ?x ISIN K

AND ?y ISIN Y;
R ($,Y) +=

r—

E

AGENT +_ "Alice Epstein"
(HASTERR = "N.Y.", "N.J."
HASCOM = .10 (:: COMTYPE "stdd"),

"Steven Miller"
(HASTERR = etc.

Figure 16: Factored Assignment

1

Factored Assignment. Factored assignment provides a read-
able form for the addition of an object together with some
of its associations.. While the syntax is completely gener-
al, it has the appearance of a a tailored data entry
language. (In fact, the form is used as the basis for
declarative syntax, see below.) An example is given in
figure 16. The effect of this statement is the same as:

AGENT +_ "Alice Epstein";
HASTERR ("Alice Epstein") _ (_"N.Y.", "N.J."_);
HASCON ("Alice Epstein") _ .10;
COMTYPE (<"Alice Epstein, .10>) _ "stdd";
AGENT +_ "Steven Miller";
HASTERR ("Steven Miller") = etc.

13

Note that "COMTYPE" modifies the HASCOM relationship <"Alice
Epstein", .10>, rather than the COMMISSION .10. This is
indicated by the use of "::".

I-

TRANS

I TRANS _TYPE

 __jTRANS_AGT

ti

TRTYPE

RAS_COM

HAS TERR

AGENT

 COMMISSION

TERRITORY

Figure 17: TR (Transaction) Data Group
 4

DB.AGENT += ?agent WHERE TR.TRANS_AGT:(?t, ?agent)
AND TR.TRANS_TYPE:(?t, "NEWAGENT");

Figure 18: Multiple Data Groups I
s— i

Multiple Data Groups. It was stated earlier that atomic
network structures were used for all data referenced in a
progra®. Thus they are used for both data base data and
local data. This means that a program generally references
many disjoint "data groups" having different scopes and
lifetimes. To indicate the context of a particular refer-
ence, the reference is prefaced by the name of the data
group involved (or more precisely, by a symbol which is
eventually bound to the name of the data group).

For example, consider an application whose purpose it is to
expand the list of agents in the AGENT data group (Figure
12), given the input data group TE (Figure 17). That
application might be coded as shown in Figure 18.

14

5.0 CONTROL S!ATECENTS

The language has a group of statements specifying control
flow. Some control statements appear as initial statements
of "control structures", which have the form:

labels control statement;

END label;

where labels may be omitted on innermost structures.
Statements in this class are DO, which serves as a bracket,
REPEAT, which provides iteration, and IF, which provides a
conditional execution facility. REPEAT and IF will be
discussed further below. Other control statements provided
are CONTINUE, EXIT, GOTO and CALL. CONTINUE initiates the
next iteration of the enclosing control structure. EXIT
leaves the control structure. GOTO is peraitted, but not
into a control structure from outside its range. CALL will
not be discussed further, as issues of argument types and
matching have not been decided.

r

REPEAT FOR EACH <?trans, ?agt> IN TR.TRANS-AGT;
DB.AGENT += ?agt

(HASCON TR.COK(?trans)
HASTERR TR.TERR(?trans));

END;

REPEAT FOR ?trans WHERE TR.COH(?trans) > .10;

REPEAT FOR EACH ?agent IN TR.AGENT, BY ?agent;

Figure 19: Repeat Statements

Repeat Statemegt. The general form of the repeat statement
is:

• REPEAT FOR EACH selection-vary selection-vector IN exp

as illustrated by the first example of figure 19. This form
works well as long as "exp" is not a selection expression.

If it is, there is unnecessary redundancy, e.g.,

• REPEAT for ?trans IN (?transx WHERE

15

The redundancy can be avoided by the elision illustrated in
the second example. The third example shows optional
ordering.

r

IF HASCOM (?agent) ;
IS < .05 THEN HASCON (?agent) = .05;
IS < .10 THEN HASCON(?agent) _ .10;
IS OTHER THEN HASCOM (?agent) = .15;
END;

IF COUNT (HASTERR (?agent)), HASCON (?agent);
IS < 5, < .05 THEN HASCOM (?agent) _ .05;
IS > 5, < .10 THEN HASCOH(?agent) = .10;
END;

IF HASCON(?agent) IS > .05 THEN GOTO NO-CHANGE;

Figure 20: Conditional Statements

Conditiona' Statement. The conditional execution statement,
"IF", represents a merging of the traditional "IF" and
"CASE", with a touch of decision table. Examples are shown
in Figure 20. The result is a very regular form more easily
read than traditional nested forms. Consider the first
example. Given only IF-THEN-ELSE, than something like the
following would be required (no attention is paid here to
terminators) :

IF HA5COM (?agent) < .05
THEN HASCOM(?agent) _ .05
ELSE IF HASCON (?agent) < .10

THEN HASCOFi (?agent) = .10
ELSE HASCON (?agent) _ .15

Similarly, the second example, which illustrates the simul-
taneous testing of multiple variable conditions, might be
coded more traditionally as:

IF COUNT (HASTERR (?agent)) < 5
AND HASCOPi(?agent) < .O5

THEN HASCOM (?agent) = .05
ELSE IF COUNT (HASTERR (?agent)) < 10

AND HASCOM (?agent) < .10
THEN HASCOM (?agent) = .10

The traditional form is included for simple tests.

16

This completes the language description portion of the
paper. There Statement types not addressed here are either
not yet definitionally stable, or fall into the excluded
"systems-oriented" category.

6.0 DA fl fQDEL: DESCRIPTION AND DISCUSSION

C
The language can be applied to a variety of models. For
example, it can be applied to the rough model given
originally by the device of "immediately translating" the
value of every term from the data base object ostensibly
referred to, to its name. Thus, referring to figures 5 and
6, the value of the term PART is defined as the set of names
of objects in the set PART.

Probably the best model to choose, however, is one directly
implied by the language. For one thing, it makes reading a
program that much simpler.. For another, the semantics of
the above language are rather complex; anything in the
direction of simplification is useful. This suggests that a
set model be used (which can be represented as a network if
desired, see below).

The specific model chosen is related to that used in SETL
[20], and is heavily influenced by conceptual model concepts
found in [7, 16, 13, and 247. Some traditional conceptual
model constructs are transformed for syntactic reasons. In
general, the transformations are defended by taking the
position that conceptual model constructs have two purposes:

• To document what information is present (or needed) in a
data base.

• To dictate constraints on implementations (object
behavior).

Thus given a syntactically inconvenient construct, it is
reasonable to explore what functions it seems to fulfill
(not always an easy task), and to determine if they might be
provided by other means.

The model is introduced below. Descriptions of particular
features are interspersed with discussions of why certain
features are incorporated or omitted.

The Basic Model. The specific model chosen consists of four
kinds of objects: scalars. relationships (also called
vectors), sets of scalars ("scalar sets"), and sets of
relationships ("relationships sets" or "vector sets").

17

At least three built-in sets are provided: NUMBERS, STRINGS,
and BOOLEANS. Each user-defined scalar set must be
constrained to be a subset either of one of the built-in
sets, or of some other user-defined set, in a non-circular
fashion. (The members of) each vector set must be
constrained a) to be of a particular degree, and b) to draw
participants in particular positions from particular (sin-
gle) source sets.

There are two kinds of primitive actions: add an object
(scalar or vector) to a set, and delete an object from a
set. The deletion of an object from a set causes the
deletion of any relationships in which it participates as a
member of that set.

§tati2 and Dynamic Sets. Dynamic sets are "normal" sets.
Their content is established and modified by assignment
statements, and must be finite. The content of static sets,
built-in or user-defined, is determined by definition, can
be infinite, and is established at the time a data base is
created. It may not be modified by assignment, but only by
modifications to definitions (as permitted). One might
specify that the content of a static set be defined by an
expression, referencing only other static sets, in a
non-circular manner. However, such an expression must be
permitted to represent an infinite set, and special
definitional forms would be useful (e.g., to limit string
syntax) .

Static sets have several uses, the Lost important of which
is the avoidance of unnecessary code. Normally, before an
object can be linked into a given relationship, it must be
separately placed into a set over which the relationship is
defined. For some kinds of objects, however, such as
measures, the fact that they are in a given set (e.g.,
WEIGHT) is relatively uninteresting, so that it makes sense
to define the entire set ahead of time. Thus one can write

• DB.PART +_ "12345" (HAS_WGT 500);

without worrying about explicitly adding 500 to the set
WEIGHT.

Since the model is
use of static .sets
tures, when necessary. In
as a relationship between
which the array values are
n by in array of arbitrary

intended to be used for all data, another
is in modelling traditional array struc-

general, an array is represented
a static set and the set from
drawn. For example, to model an
integers, one might define:

a. a static set M of the first m integers

18

b, a static set N of the

c. a static relationship

d. A relationship ARRAY
integers.

A final use of static sets is
of other sets. This is a
required integrity function
additional concepts.

first n integers

NM of their cross product

mapping from NS to the set of

in constraining the membership
natural way of providing the
without the introduction of

Dezived Sets. Algorithmic function definitions are to be
included in the language, although they are not described
here. As recognized in [23], the power of the language
makes it worthwhile to also provide a facility for the
definition of derived sets by single expressions. Two cases
may be identified: a) when the derived sets are explicitly
identified as subsets of other sets, and b) when they are
not. In the first case, the derived sets may be used as
relationship participant constraints.

4(

EMPLOYEE)

--~rBAS !lOOD1

I
MOOD

Figure 21: Multi-Context Objects

Some Implications. The model described above has some
discomforting aspects, particularly from a data base point

of view. First, it implies that the set of objects in a

data base is infinite. Second, it allows a data base such

as that shown in Figure 21, illustrating that, in general,

it is only from the name of a relationship that one can
discover the context in which the elements are being
related. Thus "BLUE" is being related as a COLOR to the CAR

"1234" via the relationship BAS_COLOR, .and is being related

as a MOOD to the EMPLOYEE "1234" via the relationship

19

"HAS MOOD". Finally, the model probably appears overly
mechanistic; it has relatively feW semantic overtones, and
is missing some familiar "conceptual model" constructs.

With respect to the "infinite data base" problem, it should
be pointed out that a) the infinite sets are not stored, and
b) the uses of infinite sets in expressions are strictly
limited.

The second problem, regarding contexts, is visual only, as
one cannot generally obtain information about the set of all
relationships in which a particular object participates.
That being the case, the problem can be resolved by the
following diagramming rules, which restore the pictorial
simplicity of the original model:

1. Depict only members of dynamic sets, and those members
of static sets which participate in some vector
(relationship).

2. Display multiple representatives of the same object,
one for every set membership by which it qualifies for
display (by rule 1). (Note: in the context of addi-
tions to the model below, this should read, "one for
every base-set membership ... ")

3. connect nodes representing relationships to the appro-
priate representatives of their participant objects.

(These rules would cause the objects shown in. Figure 21 to
appear as expected according to the original model..)

the final cause of intuitive discomfort, the lack of seman-
tic constructs, requires more discussion. In the sections
immediately following, the reasons for omitting some famil-
iar constructs are explored, and some additions are made to
the model to compensate.

WMt if nttttes. Many models explicitly distin-
guish objects representing "entities" from other scalars
(e.g., "attribute values", character strings, etc.). Gener-
ally, the names of entities, if they have any, cannot be
printed; entities are located via other (non-entity) scalars
to which they are related. Often at least one entity must
participate in any relationship. While there is no consen-
sus on what entities are [16], they seem to have several
purposes in a data model. First, "philosophically", they
mirror the consideration that real world objects are differ-
ent from their real world identifiers. Thus for the sake of
fidelity they are represented by blank objects, or special
identification systems, etc. This may be justified, howev-
er, it can be pointed out that names are in fact the. medium
by which things are represented in data processing systems,

20

automated or not.

There are, however, more practical applications of the
concept. First, entities are useful when existing identifi-
cation systems fail. For example, a) there may be several
alternative systems in use for a type of real world object,
no one of which is universal, or b) the same object must be
seen as a member of several unrelated typesets, each with
its own naming system, such as employee and stockholder
[17). In such cases, the imposition of a new identification
system, local to a data base, but universal within that data
base, has some distinct advantages. Second, the distinction
between entities and other types of scalars can serve the
same purpose as the static / dynamic set distinction
provided here.

The use of entities, however, is linguistically awkward. It
has the effect of constantly forcing oblique references to
objects, e.g.,

• HAS TERR (?agent WHERE AGT_NAAE (?agent) = "Smith")

instead of

• HAS_TERR ("Smith")

Things become even more awkward in the context of multiple
data groups, because .an object would be represented as a
different entity in each group (which also seems to remove
some of the philosophical justification). One could not for
example, state:

• DB.AGSNT += TR.AGENT;

but rather would require something like:

• FOR EACH Tagent IN TR.AGENT;
DB.AGENT += WK.TENP = NEEW_ENT(DB); (a built-in fn)
DB.AGT_NANE (WK.TESP) = TB.AGT_NANE (?agent);

Given a) the linguistic inconvenience, and b) the fact that
the model is intended to be used for all data (not just
"data base data"), it is clear that though the concept of
entity can be useful, it cannot constitute a basic element
of the model. To provide the functions of entities, when
needed, two additional constructs are provided:
"surrogates", and "propagation subsets".

The concept of surrogate is adapted from [12]. An addi-

tional built-in set, SURROGATE, is provided, being an

infinite set of distinguished objects having the form

•real-number, together with a built-in function
"NEWSURR(databasename)". Then if entities are desired in a

21

data base, the user may define a set called ENTITY (or
anything else), constrained to draw its members from SURRO-
GATE. For consistency with the language, surrogates (the
members of SURROGATE) are printable..

Propagation subsets are related to similar concepts in [7,
13, 24]. The sets which have been considered so far will be
referred to as "base sets". If a set Si is declared to be
not a base set, but a "propagation subset" of some other set
S, it has the effect that the addition of an object to Si
implicitly causes its addition to s, if not already there.
The constraining set of Si is the same as the constraining
set of S (unless S is itself a propagation subset, etc.).
However, relationship participants can be constrained to
propagation subsets.

Propagation subsets are useful, in general, as implementa-
tions of the "generalization hierarchy" of [24], but they
are not absolutely required except in an entity context.
When entities are not used, the equivalent function can be
obtained by:

a. defining some classifying relationships (e.g.,
ACCOUNT TYPE)

b. defining some derived sets based on the classifying
relationships (e.g.., CHECKING ACCTS, SAVINGS ACCTS)

c. using the derived sets as relationship partic-
ipation constraints.

With entities, however, a sufficiently large number •of
objects belong to a single generalization hierarchy, that
the lack of explicit subsets is too unwieldy, both
definitionally and operationally.

ghat appeaed to Attributes. Many models considered "con-
ceptual" distinguish strongly among various types of associ-
ations. Some of the distinctions made have a semantic
flavor (e.g., event associations, attribute associations),
while others seem structurally based (e.g., only binary
relationships. allowed, others handled as entities). While
semantic distinctions may provide interesting information,
they are not included in the model, for two reasons. First,
there is no consensus on what categories are useful, and
what they represent. (This may be because such determi-
nations are more properly made in the contest of "knowledge
base" systems.) Second, distinctions in constructs gener-
ally imply distinctions in syntax, and hence complexity.

As an example, consider attribute associations. While
attributes have a flavor of one-sidedness, and a seeming
purpose of describing one of the participants, these are

T

22

clearly rather subjective notions j15], especially in our
non-entity environment. Moreover, if attributes were
included in the model, they would be syntactically annoying;
given an additional database construct, presumably there
should be an additional language construct, e.g.:

• ?agt.SALARY = 100 AND NANAGER(?agt) = "Jones"

instead of

• SALARY(?agt) = 100 AND NANAGER(?agt) = "Jones"

Given the lack of :theoretic justification, the syntactic
problem is considered decisive. With respect to represent-
ing structurally different relationships by different
constructs, it is very difficult to understand why this
should be done. The subject will not be pursued here,
except to note that the motivation should not be one of
reference syntax; the language forms described above allow
both n-ary relationships, and relationships participating in
other relationships, to be referenced without difficulty.

Why Not Use "Natural" $eletiogship Names. The model
requires that all members of a relationship set draw partic-
ipants in the same role from the same set. In other, more
"natural" models, the same association name can be used to
relate many kinds of objects. For example, CONTAINS might
relate both OFFICES to FURNITURE and DEPARTMENTS TO EMPLOY-
EES. This is indeed the way associations are referenced in
the "real world", where contexts can be implicit. In an
accessible data model, however, contextual information is
needed both in the data, and in references to it.

With respect to the data, consider first relationships
between non-surrogates. Here only some sort of relationship
name or name adjunct can indicate which objects are being
related, e.g., which CONTAINS relationship pertains to
OFFICE "15C" and which to DEPARTMENT "15C". Next, even in
the case of surrogates, each representing a single object,
there is a problem. Consider a HAS RESPONSIBILITY relation-
ship, linking an object representing both an employee and an
officer o£ a club to a task. There must be a way of indi-
cating in what role the person has that responsibility.

References to relationships must also include contextual
information, to indicate what specific relationship and
selection variable domains are intended. Such contextual
information can be provided in many ways. The use of
distinguished relationship names has advantages both of
succinctness, and of consistency with what is clearly
necessary in the data itself. While it might be argued that
unique relationship names are difficult to remember, this
problem can be alleviated by establishing conventions for

23

relationship naming. For example, relationships between a
and Y might normally be named "HAS Y", with "% HAS_Y"
reserved for cases where more specificity is needed.

Sumaary. In summary, it might be observed that in the
process of integrating data base accesses into a classical
HLL framework, both the language forms and the data
constructs undergo some adjustment.

7.0 DATA DEFINITION

The discussion of data definition will be very brief, and is
intended only to provide a certain amount of perspective on
the types of assumptions being made.

Definition Bata Groups the language is assumed to exist
within a development / execution environment incorporating
many atomic network data groups, among them application data
groups, and definition data groups. Each global data group
has an associated definition data group specifying such
things as:

• The names of, and membership constraints on, its scalar
sets.

• The names of, and participant constraints on, its vector
sets.

• Definitions of derived sets.

• Other integrity constraints on data base content,
expressed in either specialized form (for frequent
constraints), or as general predicates.

Definition information is expressed using a prescribed group
of scalar and vector sets appropriate to data definition,
and is entered using normal means of accessing data groups.

Definitions
in

Application programs. Application programs
are also assumed to contain definition information, namely,:
a) declarations of subsets of global data groups used in the
program, and b) declarations of local data groups. Declara-
tions look like factored assignment statements, and are
considered to create local definition data groups, loaded at
compile time. For example, the following statements might
be used to define a local data group named TEN?:

• DCL TEMP SCALARS = TRANS (CONSTRAIN = INTEGER),
AGENT (CONSTRAIN = CHAR);

24

• DCL TEMP RELS = TR AGT (PART = TRANS (::INROLE = 1),
AGENT (::INROLE = 2));

Derived sets and functions can also be defined, within a
program, to span data groups, for example:

• DEFINE BAD_SUPPLIER = ?supp WHERE DB.DELIVBRY_WEEKS ...

• DEFINE GRANDCHILD(n) = DB.CHILD (DE1.CHILD(?x))

8.0 DIRECTIONS FOR FQNT! HER WOBK

As should be obvious, the above represents only a small step
toward the goal of language integration. Some obvious next
steps in the specification area include:

• Completion of the language specification to include
systems-oriented aspects. What is needed is an appro-
priate model of the structure an.d dynamics of an appli-
cation system, in the context of which decisions, such
as how to handle process initiation, messages, trans-
action boundaries, etc., can be made.

• A considerably more precise expression of language
semantics, and the imposition of restrictions on
expressions, both to ensure "computability".

Some work has been completed in these areas and should be
available shortly. In addition, a considerable amount of
work is needed in understanding how to apply current tech-
niques in optimization o€ HLLs, data retrieval, and data
storage design, to the language.

9.0 ACKNOWLEDGfENTS

The development of the model and language took place in two
stages. In 1976, the author worked closely with Bill Kent;
many aspects of the model were developed jointly at that
time. In the second stage, 1978-79, discussions with Dennis
McLeod, Farhad Arbab, and Guillermo Rodriguez were extremely
helpful.

25

10.0 REFE~ENcSS

1. P. Banana, R.E. Frankel, "FQL, A Functional Query
Language" ICf9D Int. Conf. gn ganagguent o€ Qata,
Boston, Mass. (May 1977) 52-58

2. M. Berthaud, M. Duponchel, "Toward A Foraal Language for
Functional Specifications", Proc. IFIg gorking Conf. Qn
Constructing Quality Software, North Holland (1978)

3. H. Biller, E.J. Neuhold, "Concepts for the Conceptual
Schema", In Architecture and Models in Data Base
Management Systems, G.M. Nijssen, Ed., North Holland
(1977) 1-30

4. M.B. Blasgen et. al., "SYSTEM a: An Architectural
Update", IBM Research Report R32581, San Jose,
California (July 1979)

5. R.J. Brachman, "On the Epistemological Status of Seman-
tic Networks", In Associative Networks: Hepresentation
and- Use gf Knoyledge by Computers, Academic Press
(1979) 3-50

6. P. Brinch Hansen, The Architgcture o€ concurrent
programs, Prentice Hall (July 1977)

7. E.F. Coda "Extending the Database Relational
Capture More Meaning", AM Zragsactions on
Systems 4,4 (Dec. 1979) 397-434

8. C.J. Date, "An Architecture for High-Level
Database Extensions", Proc. Aft SIGMOD in.
Management o€ Data, (June 1976)

9. J.A. Feldman, "High Level Programming for Distributed
Computing", Communications of the ACM, 22,6 (June
1979) , 353-368

Model to
Qatabase

Language
Conf. on

10. N. Goldman, D. Bile, "A Database Foundation For Process
Specifications", Proc. Int. Conf. on
Entity-Relationship Approach to Systems Analysis and
Design Los Angeles (Dec 1979) 426-445

11. R.L.Griffith, "Information Structures" IBM Tech. Rep.
TR03.014. IBM, San Jose, Calif. (May 1976)

12. P. Hall, J. Dwlett, S. Todd, "Relations and Entities"
In Modelling in Bata Base Management Systems, G.M.
Nijssen, Ed., North Holland (1976)

13. M.M. Hammer, D.J. McLeod, "The Semantic Data Model: A
Modelling Mechanism for Database Applications" Proc.
ACM SiCP10D Into Conf, on tlanaggent of Data (May 1978)

26

14. B. Housel, v. ➢addle, 5.8. Yao, "Functional Dependency
Model for Logical Database Design" Proc. 5th Int. Conf.
on Yery barge Data Bases. Rio de Janeiro, Brazil (Oct
1979) 19k-208

15. W. Kent, "Entities and Relationships in Information",
Arct3tectgre aM Models in Qata Rase Magagemeat
Systegs, G.M..Nijssen, Ed., North Holland (1977) 67-92

16. W. Kent, Data agd Rgality, North Holland (1978)

17. W. Kent, "Limitations of Record-Based Information
Models", ACM Transactions on Database Systems, 4,1,
(March 1979) 107-131

18. H.M. Markowitz, B. Hausner, H.W.Karr, SIRSCRIPT: A
Sigglatign Progragming bagguage, Prentice Hall (April
1963)

19. N.S. Prywes, A. Pnueli, S. Shastry,
dural Specification Language and
Generator In Software Development",
PrQgraning bangnages and Systems
196-217

"Use of a Nonproce-
Associated Program
ACM Transactions on
1,2 (October 1979)

20. J.T.Schwartz, On Programming, An Interim Report on the
SETL Project, Computer Science Department, Courant
Inst. Math Sci., New. York University (19.73)

21. M.E. Senko, "DIAM II: The Binary Infological Level and
its Data Base Language FORAL", Prgc. Cont. on Data
Abstraction, Detini.tion, and Structure, Salt Lake City
(March 1976)

22. G.C.H. Sharman, "A New Model of Relational Data Base
and High Level Languages", Technical Report TR.12.136,
IBM United Kingdom, (Feb. 1975)

23. D.W. Shipman, "The Functional Data Model and the Data
Language Daplex", ACS SICHOD Int. Q . on Hnagegent
of Data, Boston, Mass. (May 1977) Attendee Supplement

24. J.M. Smith, D.C.P. Smith, "Database. Abstractions:
Aggregation and Generalization", ACM Tragsactiogs on
Database Systems, 2;2 (June 1977) 105-133

27

List of Figures

Figure 1: "Entities"

Figure 2: Relationships

Figure 3: More Relationships

Figure 4: Literals

Figure 5: SUPPLIER Data Group

Figure 6: Typeset References

Figure 7: Function References

Figure 8: operators

Figure 9: EMPLOYEE Data Group

Figure 10: Selection

Figure 11: Quantification Equivalents

Figure 12: AGENT Data Group

Figure 13: Assignment

Figure 14: Other Assignment Possibilities

Figure 15: Functional Assignment

Figure 16: Factored Assignment

Figure 17: TR (Transaction) Data Group

Figure 18: Multiple Data Groups

Figure 19: Repeat Statements

Figure 20: Conditional Statements

Figure 21: Multi-Context Objects

a

28

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1_ AUTHOR(S):

Paula S. Newman

9. SUBJECT

comppt
programming
Very
semantic
application
entity/relationship

INDEX TERMS

r

application

High Level Language
network

development
model

2. TITLE:

An Atomic Network Programming Language

3. ORIGINATING DEPARTMENT

L. A. Scientific Center - 60G

4. REPORT NUMBER

6320- 2704

Sa. NUMBER OF PAGES 5b. NUMBER OF REFERENCES

27 24

6a. DATE COMPLETED 6b. DATE OF INITIAL PRINTING 6c. DATE OF LAST PRINTING

March 1980 June 1980

7. ABSTRACT:

There have been many recent studies of approaches to reducing the

fragmentation of implementation languages into programming languages,

data manipulation languages, command languages, etc. The purpose of

this paper is to present some current results of one such study.

The results include the definition of a significant part of a

language which completely integrates data base accessing into a

traditional programming language framework, and the definition and

justification of a data model which makes such integration feasible.

The model used is an instance of what is called here an "atomic

network", a network in which each fact is represented by an

individual element.

8. REMARKS:

1977 IBM LOS ANGELES SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

1978 IBM LOS ANGELES SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

T. LANG & E. B. FERNANDEZ, Improving the Com-
putation of Lower Bounds for Optimal Schedules, IBM
Journal of Research & Development, Vol. 21, No. 3,
May 1977, 273-280.

A. INSELBERG, (G320-2684) Variable Geometry
Cochlear Model at Low Input Frequencies: A Basis for
Compensating Morphological Disorders, IBM Journal of
Research & Development, Vol. 21, No. 5, September
1977, 461.478.

T. LANG, E. NAHOURAII, K. KASUGA, E. B.
FERNANDEZ, An Architectural Extension for a Large
Database System. Incorporating a Processor for Disk
Search, Proceedings of the 3rd international Conference
on Very Large Date Bases, IEEE Computer Society, or
ACM, Tokyo, 1977, 204.210.

T. LANG, E. B. FERNANDEZ, R. C. SUMMERS, A
System Architecture for Compile-Time Actions in Data-
bases, ACM 77 Proceedings of the Annual Conference,
Seattle, Washington, October 17-19,1977,11-15.

E. B. FERNANDEZ & C. WOOD, (6320.2685) The
Relationship Between Operating System and Database
System Security: A Survey, Proceedings of COMPSAC
77, 1st International Computer Software Applications
Conference, IEEE Computer Society, Chicago, III.,
November 8-11,1977,453-462.

T. LANG, C. WOOD & E. B. FERNANDEZ
(G320-2686), Database Buffer, Paging in Virtual Storage
Systems, ACM Transactions on Database Systems, Vol.
2, No. 4; December 1977, 339.351.

B. DIMSDALE, (6320-2692) Convex Cubic Splines,
IBM J. Res. Develop., Vol. 22, No. 2, March 1978,
168.178.

E. B. FERNANDEZ, T. LANG, C. WOOD, Effect of
Replacement Algorithms on a Paged Buffer Database
System, IBM J. Res. Develop., Vol. 22 No. 2, March
1978,185-196.

A. INSELBERG, (6320-2669) Cochlear Dynamics: the
Evolution of a Mathematical Modal, Siam Review, Vol.
20, No. 2, April 1978,301-351.

S. A. JUROVICS, Optimization Applied to the Design of
an Energy Efficient Building, IBM Journal of Research
and Development, Vol. 22, No. '4; July 1978, 378385.

E. B. FERNANDEZ,. R. C. SUMMERS, T.. LANG, & C.
D. COLEMAN, (6320.2663) Architectural Support for
System Protection and Database Security, IEEE Trans-
actions on Computers, C-27, No. 8, August 1978;
767-771.

R. C. SUMMERS & E. B. FERNANDEZ, An Approach
to Data Security, Proceedings of the 8th Australian
Computer Conference, September 1, 1978.

D. W. LOW, A Directed Weather Data Filter, IBM
Journal of Research & Development, Vol. 22, No. 5,
September 1978,487-497.

STEPHAN A. JUROVICS & DAVID W. LOW, Opti-
mizing the Passive Solar Characteristics of Buildings,
Presented at the Winter Annual Meeting of ASME, San
Francisco, California, December 10-15,1978, 43-51.

